設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x,f(x))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對(duì)稱(chēng)軸距離的取值范圍為( )
A.[0,]
B.[0,]
C.[0,||]
D.[0,||]
【答案】分析:先由導(dǎo)數(shù)的幾何意義,得到x的范圍,再求出其到對(duì)稱(chēng)軸的范圍.
解答:解:∵過(guò)P(x,f(x))的切線的傾斜角的取值范圍是[0,],
∴f′(x)=2ax+b∈[0,1],
∴P到曲線y=f(x)對(duì)稱(chēng)軸x=-的距離d=x-(-)=x+
∴x∈[,].∴d=x+∈[0,].
點(diǎn)評(píng):本題中是對(duì)導(dǎo)數(shù)的幾何意義的考查,計(jì)算時(shí),對(duì)范圍的換算要細(xì)心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,f(x)=ax2+bx+c,若曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,
π4
]
,則P到曲線y=f(x)的對(duì)稱(chēng)軸的距離的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,f(x)=
ex
a
+
a
ex
是R上的偶函數(shù).則a的值為( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下五個(gè)命題
①設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,
π
4
],則點(diǎn)P到曲線y=f(x)對(duì)稱(chēng)軸距離的取值范圍為[0,
1
2a
];
②一質(zhì)點(diǎn)沿直線運(yùn)動(dòng),如果由始點(diǎn)起經(jīng)過(guò)t稱(chēng)后的位移為s=
1
3
t3-
3
2
t2+2t
,那么速度為零的時(shí)刻只有1秒末;
③若函數(shù)f(x)=loga(x3-ax)(a>0,且a≠1)在區(qū)間(-
1
2
,0)
內(nèi)單調(diào)遞增,則a的取值范圍是[
3
4
,1)

④定義在R上的偶函數(shù)f(x),滿足f(x+1)=-f(x),則f(x)的圖象關(guān)于x=1對(duì)稱(chēng);
⑤函數(shù)y=f(x-2)和y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱(chēng).其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,f(x)=x2+a|lnx-1|.
(1)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[1,+∞)時(shí),求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)函數(shù).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)x0≥1,f(x1)≥1,且f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

同步練習(xí)冊(cè)答案