【題目】過點(diǎn)(1,2)且在兩坐標(biāo)軸上的截距相等的直線的方程

【答案】2x﹣y=0或x+y﹣3=0
【解析】解:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時,設(shè)該直線的方程為x+y=a, 把(1,2)代入所設(shè)的方程得:a=3,則所求直線的方程為x+y=3即x+y﹣3=0;
②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時,設(shè)該直線的方程為y=kx,
把(1,2)代入所求的方程得:k=2,則所求直線的方程為y=2x即2x﹣y=0.
綜上,所求直線的方程為:2x﹣y=0或x+y﹣3=0.
故答案為:2x﹣y=0或x+y﹣3=0
分兩種情況考慮,第一:當(dāng)所求直線與兩坐標(biāo)軸的截距不為0時,設(shè)出該直線的方程為x+y=a,把已知點(diǎn)坐標(biāo)代入即可求出a的值,得到直線的方程;第二:當(dāng)所求直線與兩坐標(biāo)軸的截距為0時,設(shè)該直線的方程為y=kx,把已知點(diǎn)的坐標(biāo)代入即可求出k的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈R,不等式ax2+ax+1>0恒成立,則實數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)R上是奇函數(shù),f(x+4)=f(x),當(dāng)x(0,2)f(x)=2x2,f(7)=( )

A. -2 B. 2 C. -98 D. 98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,C=90°,A45°,則下列各式中,正確的是

A. sinAsinB B. tanAtanB C. cosAsinA D. cosBsinB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:若a<b,則ac2<bc2;命題q:x0>0,使得x0﹣1﹣lnx0=0,則下列命題為真命題的是(
A.p∧q
B.p∨(¬q)
C.(¬p)∧q
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:x∈(0,+∞),3x>2x , 命題q:x∈(﹣∞,0),3x>2x,則下列命題為真命題的是(
A.p∧q
B.p∧(¬q)
C.(¬p)∧q
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+3在[0,a]上有最大值3,最小值2,則a的取值范圍(  )

A. [1,+∞) B. (0,2] C. [1,2] D. (﹣∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)隨機(jī)變量ξ~N(3,σ2),若P(ξ>4)=0.2,則P(3<ξ≤4)=(
A.0.8
B.0.4
C.0.3
D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為偶函數(shù),當(dāng)x≤0時,f(x)=ex1﹣x,則曲線y=f(x)在點(diǎn)(1,2)處的切線方程是

查看答案和解析>>

同步練習(xí)冊答案