設(shè)函數(shù)f(x)、g(x)的定義域分別為DJ、DE,且DJ⊆DE,若對于任意x∈DJ,都有g(shù)(x)=f(x),則稱g(x)函數(shù)為f(x)在DE上的一個延拓函數(shù).設(shè)f(x)=e-x(x-1)(x>0),g(x)為f(x)在R上的一個延拓函數(shù),且g(x)是奇函數(shù).給出以下命題:
①當x<0時,g(x)=e-x(1-x);          
②函數(shù)g(x)有3個零點;
③g(x)>0的解集為(-1,0)∪(1,+∞);      
④?x1,x2∈R,都有|g(x1)-g(x2)|<2.
其中所有正確命題的序號是
 
考點:函數(shù)零點的判定定理,函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)x<0,則-x>0,由函數(shù)得性質(zhì)可得解析式,可判①的真假,再由性質(zhì)作出圖象可對其他命題作出判斷
解答: 解:由題意得,x>0時,g(x)=f(x)=e-x(x-1),
當x<0時,則-x>0,g(-x)=f(-x)=ex(-x-1)=-g(x),所以g(x)=ex(x+1),
故①不正確;
對x<0時的解析式求導數(shù)可得,g′(x)=ex(x+2),令其等于0,解得x=-2,
且當x∈(-∞,-2)上導數(shù)小于0,函數(shù)單調(diào)遞減;
當x∈(-2,+∞)上導數(shù)大于0,函數(shù)單調(diào)遞增,
x=-2處為極小值點,且g(-2)>-1,且在x=1處函數(shù)值為0,且當x<-1是函數(shù)值為負.
又因為奇函數(shù)的圖象關(guān)于原點中心對稱,故函數(shù)f(x)的圖象應(yīng)如圖所示:
由圖象可知:函數(shù)f(x)有3個零點,故②③正確;
由于函數(shù)-1<g(x)<1,故有對?x1,x2∈R,|g(x2)-g(x1)|<2恒成立,
即④正確.
故答案為:②③④.
點評:本題是個新定義題,主要考查利用函數(shù)奇偶性求函數(shù)解析式的方法,在解題時注意對于新定義的理解,是個中檔題.作出函數(shù)的圖象是解決問題的
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014-2015學年山東省濰坊市高一上學期10月月考數(shù)學試卷(解析版) 題型:選擇題

已知函數(shù)的定義域是一切實數(shù),則的取值范圍是( )

A.0<m≤4 B.0≤m≤1 C.m≥4 D.0≤m≤4

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年江西省贛州市北校高二1月月考文科數(shù)學試卷(解析版) 題型:選擇題

如圖,正方體的棱長為,點在棱上,且,點是平面上的動點,且動點到直線的距離與點到點的距離的平方差為,則動點的軌跡是 ( )

A.圓 B.拋物線 C.雙曲線 D.橢圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有7名學生站成一排,下列情況各有多少種不同的排法.
(1)甲、乙必須排在一起;
(2)若甲不在排頭,乙不在排尾;
(3)甲、乙、丙互不相鄰;
(4)甲、乙之間須隔一個人;
(5)若甲必須在乙的右邊(可以相鄰,也可以不相鄰),有多少種站法?
(6)若將7人分成兩排,前四后三,有多少種站法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-
1
x
-alnx(a∈R)
(1)若f(x)在點(1,f(1))處的切線與圓x2+y2-2y=0相切,求a的值;
(2)是否存在實數(shù)a,使得f(x)>0在(1,+∞)上恒成立?如果存在,試求出實數(shù)a的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-alnx-1,g(x)=
ex
ex
,a<0.
(1)曲線y=f(x)在x=1處的切線與直線2x-y+1=0平行,求a的值;
(2)若對任意的x1、x2∈[3,4](x1≠x2),|f(x2)-f(x1)|<|
1
g(x1)
-
1
g(x2)
|恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn=2an+(-1)n,n≥1.求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C與雙曲線x2-
y2
3
=1的焦點相同,且與直線y=x+4有公共點,則橢圓C的長軸長的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在棱長為1的正方體ABCD-A′B′C′D′中,E為棱BC的中點.
(1)在棱BB′上是否存在點M,使D′M⊥平面B′AE?為什么?
(2)在正方體表面ABB′A′上是否存在點N,使得D′N⊥平面B′AE?為什么?

查看答案和解析>>

同步練習冊答案