【題目】C(A)表示非空集合A中的元素個數(shù),定義A*BA={1,2},B={x|(x2ax)·(x2ax+2)=0},且A*B=1,設(shè)實數(shù)a的所有可能取值組成的集合是S,則C(S)等于(  )

A. 1 B. 3

C. 5 D. 7

【答案】B

【解析】因為C(A)2,A*B1,所以C(B)1C(B)3.x2ax0,

x10,x2=-a.關(guān)于x的方程x2ax20,

當(dāng)Δ0,即a±2時,易知C(B)3,符合題意;

當(dāng)Δ>0,即a<2a>2時,易知0,-a均不是方程x2ax20的根,故C(B)4,不符合題意;

當(dāng)Δ<0,即時,方程x2ax20無實數(shù)解,

當(dāng)a0時,B{0},C(B)1,符合題意,

當(dāng)時,C(B)2,不符合題意.

所以.故C(S)3.

本題選擇B選項.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

(1)求 的值;

(2)試猜想的表達(dá)式(用一個組合數(shù)表示),并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來鄭州空氣污染較為嚴(yán)重,現(xiàn)隨機抽取一年(365天)內(nèi)100天的空氣中指數(shù)的監(jiān)測數(shù)據(jù),統(tǒng)計結(jié)果如下:

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失為 (單位:元), 指數(shù)為.當(dāng)在區(qū)間內(nèi)時對企業(yè)沒有造成經(jīng)濟(jì)損失;當(dāng)在區(qū)間內(nèi)時對企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)指數(shù)為150時造成的經(jīng)濟(jì)損失為500元,當(dāng)指數(shù)為200 時,造成的經(jīng)濟(jì)損失為700元);當(dāng)指數(shù)大于300時造成的經(jīng)濟(jì)損失為2000元.

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

(1)試寫出的表達(dá)式;

(2)試估計在本年內(nèi)隨機抽取一天,該天經(jīng)濟(jì)損失大于500元且不超過900元的概率;

(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為鄭州市本年度空氣重度污染與供暖有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域為的偶函數(shù)滿足對,有,且當(dāng)時, ,若函數(shù)上至多有三個零點,則的取值范圍是

__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—5:不等式選講]

已知.

(1)若的解集為,求的值;

(2)若不等式恒成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

)若,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍.

)過坐標(biāo)原點作曲線的切線,證明:切點的橫坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的偶函數(shù), ,都有,且當(dāng)時, ,若函數(shù))在區(qū)間內(nèi)恰有三個不同零點,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線,以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.

(1)將曲線上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的倍、2倍后得到曲線.試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標(biāo)為(0,1).當(dāng)m變化時,解答下列問題:

(1)能否出現(xiàn)ACBC的情況?說明理由;

(2)證明過A,BC三點的圓在y軸上截得的弦長為定值.

查看答案和解析>>

同步練習(xí)冊答案