1.若x∈R,$\sqrt{y}$有意義且滿足x2+y2-4x+1=0,則$\frac{y}{x}$的最大值為(  )
A.$\sqrt{3}$B.1C.$\frac{\sqrt{3}}{2}$D.3

分析 $\frac{y}{x}$可看作點(x,y)與原點連線的斜率,所以問題轉化為求圓上一點與原點連線中斜率最大值的問題.

解答 解:圓的圓心坐標(2,0)半徑為$\sqrt{3}$,如圖:
設$\frac{y}{x}$=k,則y=kx,
所以k為過原點與圓x2+y2-4x+1=0上的點連線的斜率.
由幾何意義知,直線與圓相切時,直線的斜率取得最大值或最小值,
圓的半徑為$\sqrt{3}$,圓心到原點的距離為2,
所以k=tan60°=$\sqrt{3}$,
所以$\frac{y}{x}$的最大值是$\sqrt{3}$.
故選:A.

點評 考查$\frac{y}{x}$的幾何意義,類似于本題中這樣的分式形式求最值時一般都轉化為求直線的斜率來解決.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.設a>1,函數(shù)f(x)=log2(x2+2x+a),x∈[-3,3].
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若f(x)的最大值為5,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若a,b∈R,則“a>b>0”是“a2>b2”的( 。
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=x3-3x在[-1,2]的最小值為( 。
A.2B.0C.-4D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)為偶函數(shù),若將f(x)的圖象向右平移一個單位又得到一個奇函數(shù),若f(2)=-1,則f(1)+f(2)+…+f(2015)等于( 。
A.-1B.0C.-1003D.1003

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設集合A={1,2,3},B={2,3,4,5},定義A⊙B={(x,y)|x∈A∩B,y∈A∪B},則A⊙B中元素的個數(shù)是( 。
A.7B.10C.25D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2+\frac{{\sqrt{5}}}{5}t\\ y=\frac{{2\sqrt{5}}}{5}t\end{array}\right.$(t為參數(shù)),若以直角坐標系xOy的O點為極點,Ox軸為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程為ρ=$\frac{8cosθ}{{{{sin}^2}θ}}$.
(1)將曲線C的極坐標方程化為直角坐標方程,并指出曲線是什么曲線;
(2)若直線l與曲線C交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.矩形ABCD中,AB=4,BC=3,沿AC將矩形ABCD折起,使面BAC⊥面DAC,則四面體A-BCD的外接球的體積為( 。
A.$\frac{125}{12}$πB.$\frac{125}{9}$πC.$\frac{125}{6}$πD.$\frac{125}{3}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,在矩形ABCD中,$AB=\frac{3}{2}$,BC=2,沿BD將矩形ABCD折疊,連結AC,所得三棱錐A-BCD的正視圖和俯視圖如圖所示,則三棱錐A-BCD的體積為( 。
A.$\frac{6}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{12}{5}$

查看答案和解析>>

同步練習冊答案