精英家教網 > 高中數學 > 題目詳情
12.若a,b∈R,則“a>b>0”是“a2>b2”的( 。
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

分析 由“a>b>0”利用不等式的性質可得“a2>b2”成立,但由“a2>b2”不能推出“a>b>0”成立,從而得出結論.

解答 解:由“a>b>0”利用不等式的性質可得“a2>b2”成立,故充分性成立.
但由“a2>b2”不能推出“a>b>0”,如 a=-3、b=-1時,故必要性不成立.
故選:B.

點評 本題主要考查充分條件、必要條件、充要條件的定義,通過舉反例來說明某個命題不正確,是一種簡單有效的方法.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

4.已知函數f(x)=$\frac{a}{3}$x3-$\frac{1}{2}$(a+1)x2+x-$\frac{1}{3}$(a∈R).
(1)若a<0,求函數f(x)的極值;
(2)當a≤$\frac{1}{2}$時,判斷函數f(x)在區(qū)間[0,2]上零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知向量$\overrightarrow a=(1,-2),\overrightarrow b=(1,1),\overrightarrow e$為單位向量,若$\overrightarrow e$與$\overrightarrow a$垂直,$\overrightarrow e$與$\overrightarrow b$的夾角是鈍角,則向量$\overrightarrow e$的坐標為($-\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5}$).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.如圖,四邊形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.
(1)求證:AF⊥平面FBC;
(2)求鈍二面角B-FC-D的大。

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.設平面α與平面β交于直線m,直線a?α,直線b?β,且b⊥m,則下列可以作為推出a⊥b的條件的有
①a⊥m;②α⊥β;③a∥m;④α∥β( 。
A.①③④B.②③④C.②③D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知U=R,A={x|-2≤x<2},則∁UA={x|x<-2或x≥2}.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.在△ABC中,三個內角∠A,∠B,∠C所對的邊分別為a,b,c,sin2A-sin2C=sinAsinB-sin2B.
(1)求∠C的值;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$=4,求a+b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.若x∈R,$\sqrt{y}$有意義且滿足x2+y2-4x+1=0,則$\frac{y}{x}$的最大值為(  )
A.$\sqrt{3}$B.1C.$\frac{\sqrt{3}}{2}$D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.設函數f(x)=asinωx+bcosωx(ω>0,a<0)的最小正周期為π,$(-\frac{π}{6},0)$是函數f(x)圖象的一個對稱中心,且曲線y=f(x)在該點處切線的斜率為-8.
(1)求a,b,ω的值;
(2)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值;
(3)若函數y=g(x)的圖象與函數f(x)的圖象關于直線x=-$\frac{π}{24}$對稱,判斷:曲線y=g(x)上是否存在與直線2x+19y+c=0(c為常數)垂直的切線?證明你的結論.

查看答案和解析>>

同步練習冊答案