1.已知向量$\overrightarrow{a}$=(4,3),$\overrightarrow$=(1,-1).
(Ⅰ)求$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值;
(Ⅱ)若向量3$\overrightarrow{a}$+4$\overrightarrow$與λ$\overrightarrow{a}$-$\overrightarrow$平行,求實(shí)數(shù)λ的值.

分析 (Ⅰ)根據(jù)向量的夾角公式計(jì)算即可,
(Ⅱ)根據(jù)向量的坐標(biāo)運(yùn)算和向量平行的條件即可求出.

解答 解:(Ⅰ)設(shè)$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則cosθ=$\frac{4×1+3×(-1)}{\sqrt{{4}^{2}+{3}^{2}}•\sqrt{{1}^{2}+(-1)^{2}}}$=$\frac{\sqrt{2}}{10}$,
所以$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值$\frac{\sqrt{2}}{10}$,
(Ⅱ)向量$\overrightarrow{a}$=(4,3),$\overrightarrow$=(1,-1).
∴3$\overrightarrow{a}$+4$\overrightarrow$=(12,9)+(4,-4)=(16,5),
λ$\overrightarrow{a}$-$\overrightarrow$=(4λ-1,3λ+1),∵向量3$\overrightarrow{a}$+4$\overrightarrow$與λ$\overrightarrow{a}$-$\overrightarrow$平行平,
∴16(3λ+1)=5(4λ-1)
解得λ=-$\frac{3}{4}$ 
故所求λ的值-$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積公式向量的夾角公式,以及向量平行的條件,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)集合A={x|-1<x<2},{x|$\frac{1}{8}$<($\frac{1}{2}$)x<1},則A∩B=( 。
A.(0,3)B.(1,3)C.(0,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)是定義在(0,+∞)上的函數(shù),對(duì)任意兩個(gè)不相等的正數(shù)x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}({x}_{2})}{{x}_{2}-{x}_{1}}$<0,記a=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,b=$\frac{f(sin\frac{π}{6})}{sin\frac{π}{6}}$,c=$\frac{f(lo{g}_{π}3)}{io{g}_{π}3}$,則( 。
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某企業(yè)有職工450人,其中高級(jí)職工45人,中級(jí)職工135人,一般職工270人,現(xiàn)抽30人進(jìn)行分層抽樣,則各職稱(chēng)人數(shù)分別為( 。
A.5,10,15B.3,9,18C.3,10,17D.5,9,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.變量x與y相對(duì)應(yīng)的一組數(shù)據(jù)為(1,3),(2,5.3),(3,6.9),(4,9.1),(5,10.8);變量U與V相對(duì)應(yīng)的一組數(shù)據(jù)為(1,12.7),(2,10.2),(3,7),(4,3.6),(5,1),r1表示變量y與x之間的線性相關(guān)系數(shù),r2表示變量V與U之間的線性相關(guān)系數(shù),則( 。
A.r2<r1<0B.0<r2<r1C.r2<0<r1D.r2=r1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.鈍角三角形ABC的面積是$\frac{1}{2}$,AB=1,BC=$\sqrt{2}$,則AC=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.隨機(jī)變量ξ的概率分布如表:
ξ-101
Pabc
其中a,b,c成等差數(shù)列,則b=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1,
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+$\frac{π}{6}$)+1>6cos4x對(duì)任意x∈(-$\frac{π}{4}$,$\frac{π}{4}$)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=sin(x+θ)是奇函數(shù),則滿(mǎn)足條件的所有θ組成的集合為{θ|θ=kπ,k∈Z}..

查看答案和解析>>

同步練習(xí)冊(cè)答案