設(shè)集合M={x|f(x)=0},N={x|g(x)=0},則集合P={x|f(x)•g(x)=0}一定( 。
A、等于M∩N
B、等于M∪N
C、等于 M或N
D、以上都不對(duì)
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:根據(jù)集合的定義和集合間的并集定義,推出P集合的情況,求出M∪N,然后判斷選項(xiàng).
解答: 解:∵P={x|f(x)g(x)=0},
∴P有三種可能即:P={x|f(x)=0},或P={x|g(x)=0}或P={x|f(x)=0或g(x)=0},
∵M(jìn)={x|f(x)=0},N={x|g(x)=0},
∵M(jìn)∪N={x|f(x)=0或g(x)=0},
∴P⊆(M∪N),
故選D.
點(diǎn)評(píng):此題考查子集的性質(zhì)及交集的運(yùn)算,此題的集合是抽象的,不是具體的,但比較簡(jiǎn)單,寫出p的三種情況就可以了
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

扇形的面積為6cm2,半徑為2cm,則扇形的圓心角是( 。
A、3
B、3π
C、
3
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察:52-1=24,72-1=48,112-1=120,132-1=168,…所得的結(jié)果都是24的倍數(shù),由此推測(cè)可有( 。
A、其中包含等式:152-1=224
B、一般式是:(2n+3)2-1=4(n+1)(n+2)
C、其中包含等式1012-1=10200
D、24的倍數(shù)加1必是某一質(zhì)數(shù)的完全平方

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差不為0的等差數(shù)列,且an≥0;又定義bn=
an
+
a2004-n
 (1≤n≤2003 ),則{bn}的最大項(xiàng)是( 。
A、b1001
B、b1002
C、b2003
D、不能確定的

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)M(x0,y0)在直線l:f(x,y)=0外,則方程f(x,y)=f(x0,y0)表示( 。
A、與l重合的直線
B、與l平行的直線
C、與l垂直的直線
D、點(diǎn)M(x0,y0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,BC=1,B=2A,則AC的取值范圍為( 。
A、(1,
2
B、(
2
,
3
C、(
3
,2)
D、(2,
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,已知b=15,c=30,C=123°,則此三角形的解的情況是(  )
A、一解B、二解
C、無(wú)解D、無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次方程x2-2x-a2-a=0(a>0).
(1)求證:這個(gè)方程的一根大于2,一根小于2;
(2)若對(duì)于a=1,2,3,…,2010,2011時(shí),相應(yīng)得到的一元二次方程的兩根分別為α1和β1,α2和β2,…,α2010和β2010,α2011和β2011.試求(
1
α1
+
1
α2
+…+
1
α2010
+
1
α2011
)+(
1
β1
+
1
β2
+…+
1
β2010
+
1
β2011
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)正方體的頂點(diǎn)都在球面上,它的棱長(zhǎng)為2cm,則球的表面積是( 。
A、8πcm2
B、12πcm2  
C、16πcm2  
D、20πcm2

查看答案和解析>>

同步練習(xí)冊(cè)答案