(本小題滿分12分)已知函數(shù)
(1)若對一切實數(shù)x恒成立,求實數(shù)a的取值范圍。
(2)求在區(qū)間上的最小值的表達式。
(1)
(2)

試題分析:解:⑴ 由恒成立,即恒成立

∴實數(shù)a的取值范圍為    5分
⑵ ∵
1°:當時, 
2°:當時,   10分
    12分
點評:解決的關鍵是利用函數(shù)的最值來得到參數(shù)的范圍,考查了等價轉(zhuǎn)化思想的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)設函數(shù)滿足:都有,且時,取極小值
(1)的解析式;
(2)當時,證明:函數(shù)圖象上任意兩點處的切線不可能互相垂直;
(3)設, 當時,求函數(shù)的最小值,并指出當取最小值時相應的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設,證明:對任意,.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)已知,求函數(shù)的最大值和最小值;
(2)要使函數(shù)上f (x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知定義在R上的函數(shù)滿足:對任意x∈R,都有成立,且當時,(其中的導數(shù)).設,則a,b,c三者的大小關系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定義在的函數(shù),對任意的,都有,且當時,.
(1)證明:當時,
(2)判斷函數(shù)的單調(diào)性并加以證明;
(3)如果對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)上的奇函數(shù),且當,函數(shù) 若>,則實數(shù)的取值范圍是
A.B.
C.(1,2)D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)當b=0時,若對x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求實數(shù)k的取值范圍;
(2)設h(x)的圖象為函數(shù)f (x)和g(x)圖象的公共切線,切點分別為(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求證:x1>1>x2
②若當x≥x1時,關于x的不等式ax2-x+xe+1≤0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在R上的任意函數(shù)f (x)都可以表示成一個奇函數(shù)g (x)和一個偶函數(shù)h (x)之和,如果f (x)=lg(10x+1),x∈R.那么
A.g (x)=x,h (x)=lg(10x+10-x+1)
B.g (x)=,h (x)=
C.g (x)=,h (x)=lg(10x+1)-
D.g (x)=-,h (x)=

查看答案和解析>>

同步練習冊答案