4.《張丘建算經(jīng)》中女子織布問題為:某女子善于織布,一天比一天織得快,且從第2天開始,每天比前一天多織相同量的布,已知第一天織5尺布,一月(按30天計)共織390尺布,則從第2天起每天比前一天多織( 。┏卟迹
A.$\frac{1}{2}$B.$\frac{8}{15}$C.$\frac{16}{31}$D.$\frac{16}{29}$

分析 利用等差數(shù)列的求和公式即可得出.

解答 解:設(shè)此等差數(shù)列{an}的公差為d,
則30×5+$\frac{30×29}{2}$d=390,
解得d=$\frac{16}{29}$,
故選:D.

點評 本題考查了等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:
(1)平面EFA1∥平面BCHG;
(2)BG、CH、AA1三線共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在R上的函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,5]時,f(x)=2-|x-4|,則下列不等式一定成立的是(  )
A.f( cos$\frac{2π}{3}$)>f(sin$\frac{2π}{3}$)B.f(sin 1)<f(cos 1)
C.f(sin$\frac{π}{6}$)<f(cos$\frac{π}{6}$)D.f(cos 2)>f(sin 2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知sinα=$\frac{{2\sqrt{2}}}{3}$,cos(α+β)=-$\frac{1}{3}$,且α,β∈(0,$\frac{π}{2}$),則sin(α-β)的值等于$\frac{10\sqrt{2}}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,圓O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交圓O于點N,過點N的切線交CA的延長線于點P,連接BC,CN.
(1)求證:∠BCN=∠PMN;
(2)若∠BCN=60°,PM=1,求OM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)是R上的偶函數(shù),且在(-∞,0)上是增函數(shù),并滿足f(2a2+a+1)<f(2a2-2a+3),則實數(shù)a的取值范圍是a>$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列a1,a2,a3,a4滿足a1=a4,$\frac{1}{2}$an-$\frac{1}{2{a}_{n+1}}$=an+1-$\frac{1}{{a}_{n}}$(n=1,2,3),則a1所有可能的值構(gòu)成的集合為( 。
A.{±$\frac{1}{2}$,±1}B.{±1,±2}C.{±$\frac{1}{2}$,±2}D.{±$\frac{1}{2}$,±1,±2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,已知$\frac{{{a^2}+{b^2}-{c^2}}}{ab}$•(${\frac{a}{c}$cosB+$\frac{c}$cosA)=1.
(1)求角C;
(2)若c=$\sqrt{7}$,△ABC的周長為5+$\sqrt{7}$,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若數(shù)列{an}的前n項和為Sn=kn2+n,且a10=20,則a100=(  )
A.200B.160C.120D.100

查看答案和解析>>

同步練習(xí)冊答案