5.已知函數(shù)f(x)=cos2x-$\sqrt{3}$sinxcosx+1.
(1)求函數(shù)f(x)的周期,并求f(x)的單調(diào)遞增區(qū)間;
(2)若f(θ)=$\frac{5}{6}$,且 $\frac{π}{3}$<θ<$\frac{2π}{3}$,求sin2θ的值.

分析 (1)運(yùn)用二倍角的正弦和余弦公式,及兩角和的余弦公式,化簡(jiǎn)函數(shù)f(x),再由正弦函數(shù)的周期和單調(diào)增區(qū)間,解不等式即可得到;
(2)f(θ)=$\frac{5}{6}$,求出cos(2θ+$\frac{π}{3}$)=-$\frac{2}{3}$,結(jié)合θ的范圍及同角三角函數(shù)的基本關(guān)系,求出sin(2θ+$\frac{π}{3}$)=-$\frac{\sqrt{5}}{3}$,通過(guò)sin2θ=sin(2θ+$\frac{π}{3}$-$\frac{π}{3}$),利用兩角差的正弦函數(shù)求解即可.

解答 解:(1)f(x)=cos2x-$\sqrt{3}$sinxcosx+1,
=$\frac{1}{2}$cos2x+$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$sin2x+1,
=cos(2x+$\frac{π}{3}$)+$\frac{3}{2}$. …(3分)
f(x)的最小正周期T=$\frac{2π}{ω}$=π-------…(4分)
由2kπ+π≤2x+$\frac{π}{3}$≤2kπ+2π,
解得:kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,(k∈Z).
∴函數(shù)f(x)的單調(diào)遞增區(qū)間:[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z).  …(6分)
(Ⅱ)由f(θ)=$\frac{5}{6}$,得cos(2θ+$\frac{π}{3}$)+$\frac{3}{2}$=$\frac{5}{6}$,cos(2θ+$\frac{π}{3}$)=-$\frac{2}{3}$.  …(8分)
又θ∈( $\frac{π}{3}$,$\frac{2π}{3}$),
∴2θ+$\frac{π}{3}$∈(π,$\frac{5π}{3}$),
sin(2θ+$\frac{π}{3}$)=$\sqrt{1-co{s}^{2}(2θ+\frac{π}{3})}$=-$\frac{\sqrt{5}}{3}$. …(10分)
故sin2θ=sin(2θ+$\frac{π}{3}$-$\frac{π}{3}$)=$\frac{1}{2}$sin(2θ+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$cos(2θ+$\frac{π}{3}$),
=$\frac{2\sqrt{3}-\sqrt{5}}{6}$,
∴sin2θ=$\frac{2\sqrt{3}-\sqrt{5}}{6}$.  …(12分)

點(diǎn)評(píng) 本題考查三角函數(shù)的二倍角公式和兩角和的正弦公式,考查正弦函數(shù)的周期性和單調(diào)性,函數(shù)的單調(diào)性函數(shù)值的求法,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在菱形ABCD中,∠ABC=60°,AE⊥平面ABCD,CF⊥平面ABCD,AB=AE=2,CF=3.
(I)求證:EF⊥平面BDE;
(Ⅱ)求二面角B-DF-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知各項(xiàng)為正的等比數(shù)列{an}中,a4與a14的等比中項(xiàng)為3,則2a7+a11的最小值為( 。
A.$2\sqrt{2}$B.$3\sqrt{2}$C.$4\sqrt{2}$D.$6\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若關(guān)于x的不等式4x<log2ax(a>0,且a≠$\frac{1}{2}$)的解集是{x|0<x<$\frac{1}{2}$},則a的取值的集合是$\left\{{\frac{{\sqrt{2}}}{4}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)已知點(diǎn)A(3,0),點(diǎn)B為圓C上的一動(dòng)點(diǎn),求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最大值,并求此時(shí)直線OB被圓C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知等差數(shù)列{an},a3=6,a5=10,則S7=( 。
A.60B.56C.40D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+{a}^{x+2},-1≤x<0}\\{bx-1,0≤x≤1}\end{array}\right.$,其中a>0且a≠1,若f(-1)=f(1),則logab=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.直線y=k(x+2)-1恒過(guò)定點(diǎn)A,且點(diǎn)A在直線$\frac{1}{m}$x+$\frac{1}{n}$y+8=0(m>0,n>0)上,則2m+n的最小值為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,一個(gè)箱子的每個(gè)面都是矩形且邊長(zhǎng)都是正整數(shù),若它的對(duì)角線PQ=9,則這個(gè)箱子的體積最大可能值是112.

查看答案和解析>>

同步練習(xí)冊(cè)答案