【題目】已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)= .g(x)= ,
(1)求當(dāng)x<0時(shí),函數(shù)f(x)的解析式,并在給定直角坐標(biāo)系內(nèi)畫出f(x)在區(qū)間[﹣5,5]上的圖象;(不用列表描點(diǎn))
(2)根據(jù)已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.
【答案】
(1)解:設(shè)x<0,則﹣x>0,
此時(shí)有
又∵函數(shù)f(x)為奇函數(shù),
∴ ,
即所求函數(shù)f(x)的解析式為 (x<0)
由于函數(shù)f(x)為奇函數(shù),
∴f(x)在區(qū)間[﹣5,5]上的圖象關(guān)于原點(diǎn)對(duì)稱,
f(x)的圖象如右圖所示.
(2)解:函數(shù)g(x)解析式為
∴函數(shù)g(x)為偶函數(shù)
【解析】(1)利用函數(shù)的奇偶性,直接求當(dāng)x<0時(shí),函數(shù)f(x)的解析式,然后給定直角坐標(biāo)系內(nèi)畫出f(x)在區(qū)間[﹣5,5]上的圖象.(2)直接根據(jù)已知條件直接寫出g(x)的解析式,然后說明g(x)的奇偶性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x3+ax2+bx+1的導(dǎo)函數(shù)f′(x)滿足f′(x)=2a,f′(2)=﹣b,
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè)g(x)=f′(x)ex , 求函數(shù)g(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|lgx|,且0<a<b<c時(shí),有f(a)>f(c)>f(b),則( )
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 是定義在(﹣∞,+∞)上的奇函數(shù),且f( )= .
(1)求實(shí)數(shù)a、b,并確定函數(shù)f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義R上的偶函數(shù),且當(dāng)x∈[0,+∞)時(shí),函數(shù)f(x)是單調(diào)遞減函數(shù),則f(log25),f(log3 ),f(log53)大小關(guān)系是( )
A.f(log3 )<f(log53)<f(log25)
B.f(log3 )<f(log25)<f(log53)
C.f(log53)<f(log3 )<f(log25)
D.f(log25)<f(log3 )<f(log53)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.命題“若x2>1,則x>1”的否命題為“若x2>1,則”
B.命題“?,x>1”的否定是“,x2>1”
C.命題“若x=y,則cosx=cosy"的逆否命題為假命題
D.命題“若x=y,則cosx=cosy"的逆命題為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),設(shè)h(x)=f(x)﹣g(x).
(1)求h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)在(﹣∞,0)上單調(diào)遞減,且f(2)=0,則不等式(x﹣1)f(x﹣1)>0的解集是( )
A.(﹣3,﹣1)
B.(﹣1,1)∪(1,3)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,1)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過圓O1、圓O2交點(diǎn)的直線的直角坐標(biāo)方程
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com