【題目】隨著生活節(jié)奏的加快以及智能手機(jī)的普及,外賣點(diǎn)餐逐漸成為越來越多用戶的餐飲消費(fèi)習(xí)慣.由此催生了一批外賣點(diǎn)餐平臺(tái),已知某外賣平臺(tái)的送餐費(fèi)用與送餐距離有關(guān)(該平臺(tái)只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺(tái)隨機(jī)抽取80名點(diǎn)外賣的用戶進(jìn)行統(tǒng)計(jì),按送餐距離分類統(tǒng)計(jì)結(jié)果如下表:

以這80名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.

(1)從這80名點(diǎn)外賣的用戶中任取一名用戶.求該用戶的送餐距離不超過3千米的概率;

(2)試估計(jì)利用該平臺(tái)點(diǎn)外賣用戶的平均送餐距離;

(3)若該外賣平臺(tái)給送餐員的送餐贄用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份5元;超過4千米為遠(yuǎn)距離,每份9元,若送餐員一天的目標(biāo)收 人不低于150元,試估計(jì)一天至少要送多少份外賣?

【答案】(1)(2)2.35 (3)33

【解析】

(1)由表格中數(shù)據(jù)直接利用古典概型概率公式可得結(jié)果;(2)估計(jì)每名點(diǎn)外賣用戶的平均送餐距離為;(3)送一份外賣的平均收入為(元),從而可得結(jié)果.

(1)由表格中數(shù)列據(jù)可得概率.

(2)估計(jì)每名點(diǎn)外賣用戶的平均送餐距離為

(千米),

(3)送一份外賣的平均收入為(元),

估計(jì)一天至少要送份外賣.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,平面,,且,,.

(1)取中點(diǎn),求證:平面;

(2)求直線所成角的余弦值.

(3)在線段上,是否存在一點(diǎn),使得二面角的大小為,如果存在,求與平面所成角,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù): ,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機(jī)問卷50名使用者,然后根據(jù)這50名的問卷評(píng)分?jǐn)?shù)據(jù),統(tǒng)計(jì)得到如圖所示的頻率布直方圖,其統(tǒng)計(jì)數(shù)據(jù)分組區(qū)間為[4050),[50,60),[60,70),[70,80),[80,90),[90100]

1)求頻率分布直方圖中a的值并估計(jì)這50名使用者問卷評(píng)分?jǐn)?shù)據(jù)的中位數(shù);

2)從評(píng)分在[40,60)的問卷者中,隨機(jī)抽取2人,求此2人評(píng)分都在[50,60)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)求的極坐標(biāo)方程;

(Ⅱ)射線與圓C的交點(diǎn)為與直線的交點(diǎn)為,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有紅球3個(gè)、白球2個(gè)、黑球1個(gè),從中任取2個(gè),則互斥而不對(duì)立的兩個(gè)事件是  

A. 至少有一個(gè)白球;都是白球 B. 至少有一個(gè)白球;至少有一個(gè)紅球

C. 至少有一個(gè)白球;紅、黑球各一個(gè) D. 恰有一個(gè)白球;一個(gè)白球一個(gè)黑球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,且.

(Ⅰ)求,的值;

(Ⅱ)是否存在實(shí)數(shù),使得,對(duì)任意正整數(shù)恒成立?若存在,求出實(shí)數(shù)、的值并證明你的結(jié)論;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求該函數(shù)的值域;

2)若對(duì)于任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知設(shè),綠地面積為.

(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域.

(2)當(dāng)為何值時(shí),綠地面積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案