證明:若定義在R上的函數(shù)f(x)的圖象關(guān)于點(diǎn)(a,y0)和(b,y0)(a≠b)對稱,則函數(shù)f(x)是周期函數(shù),且2(a-b)是它的一個周期.

答案:
解析:

  證明:∵f(x)是圖象關(guān)于點(diǎn)(a,y0)和(b,y0)(a≠b)對稱,

  ∴f(2a-x)=2y0-f(x),f(2b-x)=2y0-f(x),

  ∴f[2(a-b)+x]=f[2a-(2b-x)]=2y0-f(2b-x)=2y0-[2y0-f(x)]=f(x),

  ∴f(x)是周期函數(shù),且2(a-b)是它的一個周期.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動點(diǎn).
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個關(guān)于原點(diǎn)對稱的不動點(diǎn),求實(shí)數(shù)a,b應(yīng)滿足的條件;
(2)設(shè)點(diǎn)P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個不動點(diǎn)分別為A1,A2,P為函數(shù)f(x)圖象上的另一點(diǎn),其縱坐標(biāo)yP>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時點(diǎn)P的坐標(biāo).
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個不動點(diǎn),則不動點(diǎn)有奇數(shù)個”是否正確?若正確,請給予證明;若不正確,請舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動點(diǎn).
(1)若函數(shù)f(x)=
3x+ax+b
圖象上有兩個關(guān)于原點(diǎn)對稱的不動點(diǎn),求a,b應(yīng)滿足的條件;
(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個不動點(diǎn)分別為A、B,點(diǎn)M為函數(shù)圖象上的另一點(diǎn),且其縱坐標(biāo)yM>3,求點(diǎn)M到直線AB距離的最小值及取得最小值時M點(diǎn)的坐標(biāo);
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個不動點(diǎn),則不動點(diǎn)的有奇數(shù)個”是否正確?若正確,給出證明,并舉一例;若不正確,請舉一反例說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

函數(shù)f(x)的定義域?yàn)镈,如果存在x0∈D,使f(x0)=x0,則稱點(diǎn)(x0,x0)為函數(shù)f(x)圖象上的不動點(diǎn).

(1)試證明:若定義在R上的奇函數(shù)f(x)的圖象上存在有限個不動點(diǎn),則不動點(diǎn)有奇數(shù)個.

(2)若函數(shù)f(x)=的圖象上有兩個關(guān)于直線x+y=3對稱的不動點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修四數(shù)學(xué)蘇教版 蘇教版 題型:047

證明:若定義在R上的函數(shù)f(x)的圖象關(guān)于直線x=a和點(diǎn)(b,y0)(a≠b)對稱,則函數(shù)f(x)是周期函數(shù),且4(a-b)是它的一個周期.

查看答案和解析>>

同步練習(xí)冊答案