已知拋物線C:y2=2px(p>0)的焦點為F,點K(-1,0)為直線l與拋物線C準線的交點.直線l與拋物線C相交于A,B兩點,點A關于x軸的對稱點為D.
(1)求拋物線C的方程;
(2)設
FA
FB
=
8
9
,求直線l的方程.
(1)依題意知-
p
2
=-1,解得p=2,
所以拋物線C的方程為y2=4x.(4分)
(2)設A(x1,y1),B(x2,y2),則D(x1,-y1),且設直線l的方程為x=my-1(m≠0).
將x=my-1代入y2=4x,并整理得y2-4my+4=0,
從而y1+y2=4m,y1y2=4.
所以x1+x2=(my1-1)+(my2-1)=4m2-2,
x1x2=(my1-1)(my2-1)=m2y1y2-m(y1+y2)+1=1.
因為
FA
=(x1-1,y1),
FB
=(x2-1,y2),
所以
FA
FB
=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+4=8-4m2
所以8-4m2=
8
9
,解得m=±
4
3

所以直線l的方程為x=±
4
3
y-1,
即3x-4y+3=0或3x+4y+3=0.(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,圓的直徑,延長線上一點,,割線交圓于點,,過點的垂線,交直線于點,交直線于點.
(1)求證:;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=,AF∶FB∶BE=4∶2∶1,若CE與圓相切,求線段CE的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線
x2
v
-
y2
圖6
=圖
的右焦點是拋物線的焦點,則拋物線的標準方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知
1
m
+
2
n
=1(m>0,n>0)
,當mn取得最小值時,直線y=-
2
x+2
與曲線
x|x|
m
+
y|y|
n
=1
交點個數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的四個頂點為A1,A2,B1,B2,兩焦點為F1,F(xiàn)2,若以F1F2為直徑的圓內切于菱形A1B1A2B2,切點分別為A,B,C,D,則菱形A1B1A2B2的面積S1與矩形ABCD的面積S2的比值
S1
S2
=( 。
A.
5
+1
2
B.2
5
-2
C.
5
+2
2
D.
5
-1
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩定點E(-
2
,0),F(xiàn)(
2
,0)
,動點P滿足
PE
PF
=0
,由點P向x軸作垂線PQ,垂足為Q,點M滿足
PM
=(
2
-1)
MQ
,點M的軌跡為C.
(I)求曲線C的方程;
(II)若線段AB是曲線C的一條動弦,且|AB|=2,求坐標原點O到動弦AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC中,BC=4,∠BAC=120°,AD⊥BC,過B作CA的垂線,交CA的延長線于E,交DA的延長線于F,則AF=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知中,弦,直徑. 過點的切線,交的延長線于點,.則____  .

查看答案和解析>>

同步練習冊答案