集合A={-1,1},B={x|mx=1},且B⊆A,則實數(shù)m的值為( 。
A、1B、-1
C、1或-1D、1或-1或0
考點:集合的包含關系判斷及應用
專題:計算題,集合
分析:由B⊆A討論集合B的可能情況,從而解得.
解答: 解:∵B⊆A,
∴①若B=∅,m=0;
②若B={-1},m=-1;
③若B={1},m=1;
故實數(shù)m的值為:1或-1或0;
故選:D.
點評:本題考查了集合的運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A、7B、8C、16D、24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x+k(k為常數(shù)),A(-2k,2)是函數(shù)y=f1(x)圖象上的點.
(1)求實數(shù)k的值及函數(shù)y=f1(x)的解析式:
(2)將y=f1(x)的圖象向右平移3個單位,得到函數(shù)y=g(x)的圖象,若2f1(x+
m
-3})-g(x)≥1對任意的x>0恒成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,c都是正數(shù),且滿足
1
a
+
4
b
=1則使a+b>c恒成立的c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在實數(shù)a,使函數(shù)f(x)在區(qū)間[a,a+1]和[2a,2(a+1)]上單調且增減性相反,則稱函數(shù)f(x)為H函數(shù),下列說法中正確的是
 

①函數(shù)y=x2-2x+1是H函數(shù);
②函數(shù)y=sin
1
2
x是H函數(shù);
③若函數(shù)y=x2-2tx+1是H函數(shù),則必有t≤2;
④存在周期T=3的函數(shù)f(x)=sin(ωx+φ)(ω>0)是H函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)是奇函數(shù)的是( 。
A、f(x)=cosx
B、f(x)=x3+1
C、f(x)=x+
1
x
D、f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義符合函數(shù)sgnx=
1,x>0
0,x=0
-1,x<0
,設函數(shù)f(x)=
sgn(1-x)+1
2
f1(x)+
sgn(x-1)+1
2
f2(x),x∈(0,2),其中f1(x)=2x,f2(x)=-2x+4,若f(f(a))∈(0,1),則實數(shù)a的取值范圍是( 。
A、(0,log2
3
2
B、(
5
4
,2)
C、(0,log2
3
2
)∪(
5
4
,2)
D、(log2
3
2
,1)∪(1,
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosx,sinx),
b
=(1,1),則函數(shù)f(x)=
a
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=ax-1+1(a>0,a≠1)的圖象經(jīng)過一個定點,則頂點坐標是
 

查看答案和解析>>

同步練習冊答案