精英家教網 > 高中數學 > 題目詳情

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設分店,為了確定在該區(qū)開設分店的個數,該公司對該市已開設分店聽其他區(qū)的數據作了初步處理后得到下列表格.記表示在各區(qū)開設分店的個數, 表示這個個分店的年收入之和.

(個)

2

3

4

5

6

(百萬元)

2.5

3

4

4.5

6

(1)該公司已經過初步判斷,可用線性回歸模型擬合的關系,求關于的線性回歸方程

(2)假設該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在區(qū)開設多少個分店時,才能使區(qū)平均每個店的年利潤最大?

(參考公式: ,其中

【答案】(1) ;(2) 該公司應開設4個分店時,在該區(qū)的每個分店的平均利潤最大.

【解析】試題分析:

(1)根據所給數據,按照公式計算回歸方程中的系數即可;

2利用(1)得利潤與分店數之間的估計值,計算,由基本不等式可得最大值.

試題解析:

(1)由表中數據和參考數據得: ,

,∴,

(2)由題意,可知總收入的預報值之間的關系為: ,

設該區(qū)每個分店的平均利潤為,則,

的預報值之間的關系為,

則當時, 取到最大值,

故該公司應開設4個分店時,在該區(qū)的每個分店的平均利潤最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設定義在(0,+∞)上的函數f(x)滿足xf′(x)﹣f(x)=xlnx,f( )= ,則f(x)(
A.有極大值,無極小值
B.有極小值,無極大值
C.既有極大值,又有極小值
D.既無極大值,也無極小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數列,并求{an}的通項公式;
(2)證明: + +…+

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(x+ ),x∈R,且f( )=
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3﹣tx2+3x,若對于任意的a∈[1,2],b∈(2,3],函數f(x)在區(qū)間(a,b)上單調遞減,則實數t的取值范圍是( 。
A.(﹣∞,3]
B.(﹣∞,5]
C.[3,+∞)
D.[5,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點E、F分別是棱BC,的中點,P是側面內一點,若平面AEF,則線段長度的取值范圍是_________。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知點P是平行四邊形ABCD所在平面外一點,M、N分別是AB、PC的中點.

(1)求證:MN∥平面PAD;

(2)在PB上確定一個點Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點P.

(1)若l與直線x+3y﹣1=0垂直,求l的方程;

(2)點A(﹣1,3)和點B(3,1)到直線l的距離相等,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列 的通項公式是 ,那么這個數列是(
A.遞增數列
B.遞減數列
C.常數列
D.擺動數列

查看答案和解析>>

同步練習冊答案