【題目】已知曲線(xiàn) 的參數(shù)方程為 ( 為參數(shù)),直線(xiàn) 的參數(shù)方程為 ( 為參數(shù)).
(Ⅰ)求曲線(xiàn) 和直線(xiàn) 的普通方程;
(Ⅱ)若點(diǎn) 為曲線(xiàn) 上一點(diǎn),求點(diǎn) 到直線(xiàn) 的距離的最大值.
【答案】解:(Ⅰ)消去參數(shù) 可得曲線(xiàn) 的普通方程 ,
消去參數(shù) 可得直線(xiàn) 的普通方程為 ;
(Ⅱ)∵點(diǎn) 為曲線(xiàn) 上一點(diǎn),
∴點(diǎn) 的坐標(biāo)為 ,
根據(jù)點(diǎn)到直線(xiàn)的距離公式,得
.
∴
【解析】(1)利用cos2θ+sin2θ=1可得曲線(xiàn)C的直角坐標(biāo)方程.消去參數(shù)t可得:直線(xiàn)l的直角坐標(biāo)方程.
(2)設(shè)P(2cosθ,sinθ),直線(xiàn)l為 x y + 4 = 0 ,利用點(diǎn)到直線(xiàn)的距離公式、三角函數(shù)的單調(diào)性即可得出.
【考點(diǎn)精析】本題主要考查了橢圓的參數(shù)方程的相關(guān)知識(shí)點(diǎn),需要掌握橢圓的參數(shù)方程可表示為才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=3x-x3在區(qū)間(a2-12,a)上有最小值,則實(shí)數(shù)a的取值范圍是( )
A.(-1,3)
B.(-1,2)
C.(-1,3]
D.(-1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái) 中, , 分別是 , 的中點(diǎn), , 平面 ,且 .
(1)證明: 平面 ;
(2)若 , 為等邊三角形,求四棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū) 的年平均濃度不得超過(guò)3S微克/立方米, 的24小時(shí)平均濃度不得超過(guò)75微克/立方米.某市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天 的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如圖表:
組別 | 濃度(微克/立方米) | 頻數(shù)(天) | 頻率 |
第一組 | 3 | 0.15 | |
第二組 | 12 | 0.6 | |
第三組 | 3 | 0.15 | |
第四組 | 2 | 0.1 |
(Ⅰ)將這20天的測(cè)量結(jié)果按表中分組方法繪制成的樣本頻率分布直方圖如圖.
(。┣髨D中 的值;
(ⅱ)在頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從 的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.
(Ⅱ)將頻率視為概率,對(duì)于2016年的某3天,記這3天中該居民區(qū) 的24小時(shí)平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為 ,求 的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的最小正周期為 ,將函數(shù) 的圖象向左平移 個(gè)單位長(zhǎng)度,再向下平移 個(gè)單位長(zhǎng)度,得到函數(shù) 的圖象.
(Ⅰ)求函數(shù) 的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角 中,角 的對(duì)邊分別為 .若 , ,求 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ( )在同一半周期內(nèi)的圖象過(guò)點(diǎn) , , ,其中 為坐標(biāo)原點(diǎn), 為函數(shù) 圖象的最高點(diǎn), 為函數(shù) 的圖象與 軸的正半軸的交點(diǎn), 為等腰直角三角形.
(1)求 的值;
(2)將 繞原點(diǎn) 按逆時(shí)針?lè)较蛐D(zhuǎn)角 ,得到 ,若點(diǎn) 恰好落在曲線(xiàn) ( )上(如圖所示),試判斷點(diǎn) 是否也落在曲線(xiàn) ( )上,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形 中,點(diǎn) 在線(xiàn)段 上, , ,沿直線(xiàn) 將 翻折成 ,使點(diǎn) 在平面 上的射影 落在直線(xiàn) 上.
(Ⅰ)求證:直線(xiàn) 平面 ;
(Ⅱ)求二面角 的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖四邊形 中, 為的 內(nèi)角 的對(duì)邊,且滿(mǎn)足 .
(Ⅰ)證明: 成等差數(shù)列;
(Ⅱ)已知 求四邊形 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:①已知 ,“ 且 ”是“ ”的充分條件;
②已知平面向量 , 是“ ”的必要不充分條件;
③已知 ,“ ”是“ ”的充分不必要條件;
④命題 “ ,使 且 ”的否定為 “ ,都有 且 ”.其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com