已知直線l過點O(0,0)和點P(2+
3
cosα,
3
sinα),則直線l的斜率的最大值為(  )
A、
1
2
B、
3
3
C、
3
2
D、
3
分析:先根據(jù)動點P的坐標(biāo)可確定動點P的軌跡方程,進(jìn)而可得到當(dāng)直線l與圓C相切時斜率取得最值,即可確定答案.
解答:解∵動點P(2+
3
cosα,
3
sinα)的軌跡方程為圓C:(x-2)2+y2=3,
∴當(dāng)直線l與圓C相切時,斜率取得最值,
∴kmax=
3
22-(
3
)
2
=
3
,
故選D
點評:本題主要考查直線與圓的位置關(guān)系和根據(jù)動點求軌跡方程.考查基礎(chǔ)知識的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點P(4,0),且與圓O:x2+y2=8相交,求直線l的傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)單元檢測:直線與圓(解析版) 題型:選擇題

已知直線l過點O(0,0)和點P(2+cosα,sinα),則直線l的斜率的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省保定市徐水一中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:選擇題

已知直線l過點O(0,0)和點P(2+cosα,sinα),則直線l的斜率的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省保定市徐水一中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:選擇題

已知直線l過點O(0,0)和點P(2+cosα,sinα),則直線l的斜率的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案