【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為 , 且經(jīng)過點(diǎn)M(4,1),直線l:y=x+m交橢圓于不同的兩點(diǎn)A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;

【答案】解:(Ⅰ)設(shè)橢圓的方程為,
∵橢圓的離心率為e=,
∴a2=4b2 ,
又∵M(jìn)(4,1),
,解得b2=5,a2=20,故橢圓方程為
(Ⅱ)將y=x+m代入并整理得
5x2+8mx+4m2﹣20=0,
∵直線l:y=x+m交橢圓于不同的兩點(diǎn)A,B
∴△=(8m)2﹣20(4m2﹣20)>0,解得﹣5<m<5
【解析】(I)設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)橢圓的離心率為 , 得出a2=4b2 , 再根據(jù)M(4,1)在橢圓上,解方程組得b2=5,a2=20,從而得出橢圓的方程;
(II)因?yàn)橹本l:y=x+m交橢圓于不同的兩點(diǎn)A,B,可將直線方程與橢圓方程消去y得到關(guān)于x的方程,有兩個不相等的實(shí)數(shù)根,從而△>0,解得﹣5<m<5;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,點(diǎn)P(2,0).

(I)求橢圓C的短軸長與離心率;

( II)(1,0)的直線與橢圓C相交于M、N兩點(diǎn),設(shè)MN的中點(diǎn)為T,判斷|TP||TM|的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)教職工春季競走比賽在校田徑場隆重舉行,為了解高三年級男、女兩組教師的比賽用時情況,體育組教師從兩組教師的比賽成績中,分別各抽取9名教師的成績(單位:分鐘),制作成下面的莖葉圖,但是女子組的數(shù)據(jù)中有一個數(shù)字模糊,無法確認(rèn),假設(shè)這個數(shù)字具有隨機(jī)性,并在圖中以a表示,規(guī)定:比賽用時不超過19分鐘時,成績?yōu)閮?yōu)秀.
(1)若男、女兩組比賽用時的平均值相同,求a的值;
(2)求女子組的平均用時高于男子組平均用時的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3+sinx+2x的定義域?yàn)镽,數(shù)列{an}是公差為d的等差數(shù)列,且a1+a2+a3+a4+…a2015<0,記m=f(a1)+f(a2)+f(a3)+…f(a2015),關(guān)于實(shí)數(shù)m,下列說法正確的是( 。
A.m恒為負(fù)數(shù)
B.m恒為正數(shù)
C.當(dāng)d>0時,m恒為正數(shù);當(dāng)d<0時,m恒為負(fù)數(shù)
D.當(dāng)d>0時,m恒為負(fù)數(shù);當(dāng)d<0時,m恒為正數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機(jī)動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在用二次法求方程3x+3x-8=0在(1,2)內(nèi)近似根的過程中,已經(jīng)得到f1)<0,f1.5)>0,f1.25)<0,則方程的根落在區(qū)間(  )

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的T值為( 。

A.30
B.54
C.55
D.91

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2ax﹣x2+lnx,a為常數(shù).
當(dāng)a=時,求f(x)的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為中國傳統(tǒng)智力玩具魯班鎖,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即樟卯結(jié)構(gòu))嚙合,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對稱,六根完全相同的正四棱柱分成三組,經(jīng)90°榫卯起來.現(xiàn)有一魯班鎖的正四校柱的底面正方形邊長為1,欲將其放入球形容器內(nèi)(容器壁的厚度忽略不計),若球形容器表面積的最小值為30π,則正四棱柱的高為______

查看答案和解析>>

同步練習(xí)冊答案