log3
1
9
+loga1+81
1
4
=
1
1
分析:根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)吧要求的式子化為 log33-2+0+(34
1
4
,運(yùn)算求得結(jié)果.
解答:解:∵log3
1
9
+loga1+81
1
4
=log33-2+0+(34
1
4
=-2+0+3=3,
故答案為 1.
點(diǎn)評(píng):本題主要考查對(duì)數(shù)的運(yùn)算性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí)不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
).則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、c>a>b
C、c>b>a
D、a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí)不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=logπ3.f(logπ3),c=log3
1
9
•f(log3
1
9
)
,則a,b,c大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈R時(shí),f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
)
,則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),且當(dāng)x∈(-∞,0)時(shí),f(x)+xf′(x)<0成立,若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),則a,b,c的從大到小排列是
c>a>b
c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí)不等式,f(x)+xf′(x)<0恒成立,若a=30.3f(30.3),b=(logπ3)f(logπ3)c=(log3
1
9
)f(log3
1
9
)
,則a,b,c的大小關(guān)系(用“>”連接)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案