已知函數(shù)f(x)=ax3+bx2-2x在x=-2,x=1處取得極值.
①求函數(shù)f(x)的解析式;
②求函數(shù)f(x)在[-3,3]上的最大值和最小值.
分析:①是實(shí)數(shù)集上的可導(dǎo)函數(shù),再通過(guò)極值點(diǎn)與導(dǎo)數(shù)的關(guān)系,即極值點(diǎn)必為f′(x)=0的根建立起相關(guān)等式,運(yùn)用待定系數(shù)法確定a、b的值;
②分別求出端點(diǎn)值和極值,通過(guò)比較即可的出結(jié)論.
解答:解:①∵f(x)=ax3+bx2-2x
∴f′(x)=3ax2+2bx-2…..(2分)
由題意知    f′(-2)=0,f′(1)=0 ….(3分)
3a×4-4b-2=0
3a+2b-2=0
?a=
1
3
,b=
1
2
…..(5分)
所以f(x)=
1
3
x3+
1
2
x2-2x…..(7分)
②因?yàn)閒(-2)=
1
3
(-2)3+
1
2
(-2)2-2×(-2)=
10
3

f(1)=
1
3
×13+
1
2
×12-2×1=-
7
6

f(-3)=
1
3
(-3)3 + 
1
2
(-3)2-2×(-3)=
3
2

f(3)=
1
3
×33+
1
2
×32
-2×3=
15
2
.….(11分)
所以:函數(shù)f(x)的最大值為
15
2
,最小值-
7
6
…(12分)
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,求函數(shù)在閉區(qū)間[a,b]上的最大值與最小值是通過(guò)比較函數(shù)在(a,b)內(nèi)所有極值與端點(diǎn)函數(shù)f(a),f(b) 比較而得到的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案