已知函數(shù).
(1當 時, 與)在定義域上單調(diào)性相反,求的 的最小值。
(2)當時,求證:存在,使的三個不同的實數(shù)解,且對任意且都有.
(1) 1,(2)詳見解析.
【解析】
試題分析:(1)利用導數(shù)求函數(shù)單調(diào)性,注意考慮函數(shù)定義域. 兩個函數(shù)的單調(diào)性可以從可以確定的函數(shù)入手.因為當時,;當時,對恒成立,所以,對恒成立,所以,在上為增函數(shù)。根據(jù)和在定義域上單調(diào)性相反得,在上為減函數(shù),所以對恒成立,即:,所以因為,當且僅當時,取最大值.所以,此時的最小值是,-(2)運用函數(shù)與方程思想,方程有三個不同的解,實質(zhì)就是函數(shù)與有三個不同的交點 ,由圖像可知在極大值與極小值之間. 證明不等式,需從結(jié)構(gòu)出發(fā),利用條件消去a,b,將其轉(zhuǎn)化為一元函數(shù):,從而根據(jù)函數(shù)單調(diào)性,證明不等式.
解析:(1)因為 2分。
當時,;當時,對恒成立,
所以,對恒成立,所以,在上為增函數(shù)。
根據(jù)和在定義域上單調(diào)性相反得,在上為減函數(shù),所以對恒成立,即:,所以因為,當且僅當時,取最大值.所以,此時的最小值是, 6分
(2)因為當時,,且一元二次方程的,所以有兩個不相等的實根 8分
當時,為增函數(shù);
當時,為減函數(shù);
當時,為增函數(shù);
所以當時,一定有3個不相等的實根,,
分別在內(nèi),不妨設(shè),因為,所以即即
即所以
所以
,令,則
由(1)知在上為減函數(shù),又
所以當,又
所以即 16分
考點:利用導數(shù)求函數(shù)單調(diào)性,利用導數(shù)求函數(shù)交點,利用導數(shù)證明不等式
科目:高中數(shù)學 來源:2013-2014學年江蘇省徐州市高三第三次質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:填空題
在平面直角坐標系中,直線與函數(shù)的圖象所有交點的橫坐標之和為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省徐州市高三第三次質(zhì)量檢測文科數(shù)學試卷(解析版) 題型:填空題
在平面直角坐標系中,直線與函數(shù)的圖象所有交點的橫坐標之和為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省徐州市高三第三次質(zhì)量檢測文科數(shù)學試卷(解析版) 題型:填空題
一個正方體玩具的6個面分別標有數(shù)字1,2,2,3,3,3.若連續(xù)拋擲該玩具兩次,則向上一面數(shù)字之和為5的概率為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省高考模擬考試理科數(shù)學試卷(解析版) 題型:解答題
如圖,在四棱柱中,已知平面平面且,.
(1)求證:
(2)若為棱上的一點,且平面,求線段的長度
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省高考模擬考試理科數(shù)學試卷(解析版) 題型:填空題
在不等式組,所表示的平面區(qū)域內(nèi)的所有格點(橫、縱坐標均為整數(shù)的點稱為格點)中任取3個點,則該3點恰能作為一個三角的三個頂點的概率為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省高考模擬考試文科數(shù)學試卷(解析版) 題型:填空題
如圖,已知:|AC|=|BC|=4,∠ACB=90°,M為BC的中點,D為以AC為直徑的圓上一動點,則的最大值是 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省南通市高三年級第三次模擬考試理科數(shù)學試卷(解析版) 題型:解答題
若矩陣把直線變換為另一條直線,試求實數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com