已知曲線處的切線互相垂直,求的值
    
分別求導(dǎo)根據(jù)兩函數(shù)在處的導(dǎo)數(shù)值之積等于-1,建立關(guān)于的方程,解出的值
 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù).
⑴ 當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
⑵ 對(duì)任意的函數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)方程;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)的單調(diào)減區(qū)間
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)且導(dǎo)數(shù).
(1)試用含有的式子表示,并求的單調(diào)區(qū)間;
(2)對(duì)于函數(shù)圖象上不同的兩點(diǎn),且,如果在函數(shù)圖像上存在點(diǎn)(其中)使得點(diǎn)處的切線,則稱存在“相依切線”.特別地,當(dāng)時(shí),又稱存在“中值相依切線”.試問(wèn):在函數(shù)上是否存在兩點(diǎn)使得它存在“中值相依切線”?若存在,求的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)恰好有兩個(gè)不同的零點(diǎn),求的值。
(Ⅱ)若函數(shù)的圖象與直線相切,求的值及相應(yīng)的切點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線在點(diǎn) 處的切線斜率為 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線C:處的切線方程為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)(1,2)處的切線方程為           

查看答案和解析>>

同步練習(xí)冊(cè)答案