(文科)已知α∈(,π),sinα=,則tan=   
【答案】分析:利用同角三角函數(shù)的基本關系求出cosα 和tanα的值,利用兩角和的正切公式求出tan的值.
解答:解:∵α∈(,π),sinα=,∴cosα=-,∴tanα=-
∴tan==,
故答案為:
點評:本題考查同角三角函數(shù)的基本關系,兩角和的正切公式的應用,求出tanα=-,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文科)已知α是第二象限且sinα=
4
5
,則tanα的值是
-
4
3
-
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-1|+|x-2|.
(1)求函數(shù)f(x)的最小值;
(2)(文科)已知k為非零常數(shù),若不等式|t-k|+|t+k|≥|k|f(x)對于任意t∈R恒成立,求實數(shù)x的取值集合;
(3)(理科)設不等式f(x)≤2的解集為集合A,若存在x∈A,使得x2+(1-a)x=-9求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科)已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
)(n∈N*)

(1)求數(shù)列{an}的通項公式;
(2)記Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn;
(3)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b&2+…+bn
,若Sn
m-2000
2
時n∈N*恒成立,求最小的正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(重慶市2011屆高三下學期第二次聯(lián)合診斷性考試文科)已知函數(shù)f(x)=
a
3
x3-
a+1
2
x2+x+b

(1)當f(x)=
a
3
x3-
a+1
2
x2+x+b
時,求函數(shù)f(x)=
a
3
x3-
a+1
2
x2+x+b
的單調(diào)區(qū)間:
(2)若函數(shù)f(x)=
a
3
x3-
a+1
2
x2+x+b
的圖象過點(1,1)且極小值點在區(qū)間(1,2)內(nèi),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科)已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+2)=f(x).當0≤x≤1時,f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象在[0,2]內(nèi)恰有兩個不同的公共點,則實數(shù)a=
-
1
4
或0
-
1
4
或0

查看答案和解析>>

同步練習冊答案