【題目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解關(guān)于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集為(﹣1,3),求實(shí)數(shù)a,b的值.

【答案】解:(Ⅰ)∵f(x)=﹣3x2+a(6﹣a)x+6,f(1)>0
∴﹣3+a(6﹣a)+6>0
∴a2﹣6a﹣3<0

∴不等式的解集為
(Ⅱ)∵不等式f(x)>b的解集為(﹣1,3),
∴﹣3x2+a(6﹣a)x+6>b的解集為(﹣1,3),
∴﹣1,3是方程3x2﹣a(6﹣a)x﹣6+b=0的兩個根


【解析】(Ⅰ)f(1)>0,即﹣3+a(6﹣a)+6>0,即a2﹣6a﹣3<0,由此可得不等式的解集;
(Ⅱ)不等式f(x)>b的解集為(﹣1,3),等價于﹣3x2+a(6﹣a)x+6>b的解集為(﹣1,3),即﹣1,3是方程3x2﹣a(6﹣a)x﹣6+b=0的兩個根,利用韋達(dá)定理可求實(shí)數(shù)a,b的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱ABC﹣A′B′C′中,若AA′=2AB,則異面直線AB′與BC′所成角的余弦值為( )

A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=

(1)畫出函數(shù)f(x)的圖象;
(2)求f(f(3))的值;
(3)求f(a2+1)(a∈R)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人們生活水平的提高,越來越注重科學(xué)飲食.營養(yǎng)學(xué)家指出,成人良好的日常飲食應(yīng)該至少提供0.075kg的碳水化合物,0.06kg的蛋白質(zhì),0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質(zhì),0.14kg脂肪,花費(fèi)28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質(zhì),0.07kg脂肪,花費(fèi)21元.為了滿足營養(yǎng)專家指出的日常飲食要求,同時使花費(fèi)最低,每天需要同時食用食物A和食物B多少kg?最低花費(fèi)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=a+ 是奇函數(shù),則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是兩個實(shí)數(shù),給出下列條件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.
其中能推出:“a,b中至少有一個大于1”的條件是 .(填序號,只有一個正確選項(xiàng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z=3+bi(b∈R),且(1+3i)z為純虛數(shù).
(1)求復(fù)數(shù)z;
(2)若 ,求復(fù)數(shù)w的模|w|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:
①x>1時,f(x)<0;
②f( )=1;
③對任意的正實(shí)數(shù)x,y,都有f(xy)=f(x)+f(y).
(1)求證:f( )=﹣f(x);
(2)求證:f(x)在定義域內(nèi)為減函數(shù);
(3)求滿足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|lgx|﹣( x有兩個零點(diǎn)x1 , x2 , 則有( )
A.x1x2<0
B.x1x2=1
C.x1x2>1
D.0<x1x2<1

查看答案和解析>>

同步練習(xí)冊答案