7.與圓x2+y2-4x-6y+12=0相切且在兩坐標(biāo)軸上的截距相等的直線有( 。
A.4條B.3條C.2條D.1條

分析 根據(jù)切線方程在兩條坐標(biāo)軸上截距相等設(shè)切線方程為x+y=m,y=kx,根據(jù)圓心到切線的距離d等于圓的半徑,利用點(diǎn)到直線的距離公式列出關(guān)于m的方程,求出方程的解得到m的值,即可確定出切線方程.

解答 解:將圓方程化為標(biāo)準(zhǔn)方程得:(x-2)2+(y-3)2=1,
∴圓心C坐標(biāo)為(2,3),半徑r=1,
根據(jù)題意設(shè)所求切線方程為x+y=m,
∵圓心到切線的距離d=r,
∴$\frac{|2+3-m|}{\sqrt{2}}$=1,即m=5±$\sqrt{2}$,
則所求切線方程為x+y+5-$\sqrt{2}$=0或x+y+5+$\sqrt{2}$=0.
直線過原點(diǎn)時,設(shè)方程為y=kx,即kx-y=0,
∵圓心到切線的距離d=r,
∴$\frac{|2k-3|}{\sqrt{{k}^{2}+1}}$=1,∴3k2-12k+8=0,△>0,方程有兩解
故選:A.

點(diǎn)評 此題考查了圓的切線方程,以及直線的截距式方程,涉及的知識有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,直線與圓相切時,圓心到切線的距離等于圓的半徑,熟練掌握此性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)設(shè)P是橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上任意一點(diǎn),P是焦點(diǎn).證明:以PF為直徑的圓與以橢圓長軸為直徑的圓相切;
(2)設(shè)P是雙曲線M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$上任意一點(diǎn),F(xiàn)是焦點(diǎn),請你類比(1),寫出一個類似的結(jié)論,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x,y∈R,滿足x2+2xy+4y2=6,則z=x2+4y2的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某地交通管理部門從當(dāng)?shù)伛{校學(xué)員中隨機(jī)抽取9名學(xué)員參加交通法規(guī)知識抽測,活動設(shè)有A、B、C三個等級,分別對應(yīng)5分,4分,3分,恰好各有3名學(xué)員進(jìn)入三個級別,現(xiàn)從中隨機(jī)抽取n名學(xué)員(假設(shè)各人被抽取的可能性是均等的,1≤n≤9),再將抽取的學(xué)員的成績求和.
(I)當(dāng)n=3時,記事件A={抽取的3人中恰有2人級別相同},求P(A);
(Ⅱ)當(dāng)n=2時,若用ξ表示n個人的成績和,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|3≤3x≤27},$B=\left\{{x\left|{{{log}_{\frac{1}{2}}}(2x-1)<-1}\right.}\right\}$.
(1)分別求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,AB=BC=2AA1,∠ABC=90°,D是BC的中點(diǎn),E是AC的中點(diǎn)
(1)求證:BE⊥A1C;
(2)求二面角C1-AD-C的余弦值; 
(3)試問線段A1B1上是否存在點(diǎn)F,使AF與DC1成60°角?若存在,確定F點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.等差數(shù)列{an}中,已知a7=-2,a20=-28,
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線m:2x-y-3=0與直線n:x+y-3=0的交點(diǎn)為P.
(1)若直線l過點(diǎn)P,且點(diǎn)A(1,3)和點(diǎn)B(3,2)到直線l的距離相等,求直線l的方程;
(2)若直線l1過點(diǎn)P且與x,y正半軸交于A、B兩點(diǎn),△ABO的面積為4,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}滿足a1=0,an+1=$\frac{{{a_n}-\sqrt{3}}}{{\sqrt{3}{a_n}+1}},n∈{N^*},則{a_{2016}}$=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案