2.已知集合A={x|3≤3x≤27},$B=\left\{{x\left|{{{log}_{\frac{1}{2}}}(2x-1)<-1}\right.}\right\}$.
(1)分別求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求實數(shù)a的取值集合.

分析 (1)先確定,A,B集合的范圍,根據(jù)集合的基本運算即可求A∩B,(∁RB)∪A;
(2)根據(jù)集合C={x|1<x<a},C⊆A,對C進行討論,在根據(jù)集合的基本運算求解實數(shù)a的范圍.

解答 解:(1集合A={x|3≤3x≤27}={x|1≤x≤3},$B=\left\{{x\left|{{{log}_{\frac{1}{2}}}(2x-1)<-1}\right.}\right\}$={x|x$>\frac{3}{2}$},則(∁RB)={x|$x≤\frac{3}{2}$}
那么:A∩B={x|$\frac{3}{2}<x≤3$};
(∁RB)∪A={x|x≤3}.
(2)集合C={x|1<x<a},C⊆A,
當C=∅時,a≤1,滿足題意.
當C≠∅時,C⊆A,則有:$\left\{\begin{array}{l}{a≤3}\\{a>1}\end{array}\right.$,解得:1<a≤3
綜上所述:實數(shù)a的取值集合是{a|a≤3}.

點評 本題主要考查集合的基本運算,比較基礎(chǔ).屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知a=-($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,b=log23,c=sin880°,把a,b,c按從小到大的順序是a<c<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.符號[x]表示不超過x的最大整數(shù),如[π]=3,[-10.3]=-11,定義函數(shù){x}=x-[x],那么下列結(jié)論中正確的序號是②③.
①函數(shù){x}的定義域為R,值域為[0,1];
②方程$\{x\}=\frac{1}{2}$有無數(shù)解;
③函數(shù){x}是周期函數(shù);
④函數(shù){x}在[n,n+1](n∈Z)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合M={x|x>1},集合N={x|2x+3>0},則(∁RM)∩N=(  )
A.(-$\frac{3}{2},1$)B.(-$\frac{3}{2},1$C.-$\frac{3}{2},1$)D.-$\frac{3}{2},1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow a$=(1,0),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.與圓x2+y2-4x-6y+12=0相切且在兩坐標軸上的截距相等的直線有( 。
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$sin(\frac{π}{4}+α)=\frac{{\sqrt{3}}}{2}$,則sin(-2α)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖甲三棱錐P-ABC的高PO=8,AB=BC=3,∠ACB=30°,M、N分別在BC和PO上,且CM=x,PN=2CM,則如圖乙中四個圖象中大致描繪了三棱錐N-AMC的體積V與x的變化關(guān)系(x∈(0,3])的是①.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點P是函數(shù)f(x)=2$\sqrt{2x}$圖象上的任意一點,過點P向圓D:x2+y2-4x+3=0作切線,切點分別為A、B,則四邊形PADB面積的最小值為( 。
A.$\sqrt{3}$B.$\sqrt{15}$C.2$\sqrt{15}$D.2$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案