20.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個數(shù)字相鄰,則滿足條件的不同五位數(shù)的個數(shù)是48.(注:結(jié)果請用數(shù)字作答)

分析 對數(shù)字4分類討論,結(jié)合數(shù)字1,3,5中有且僅有兩個數(shù)字相鄰,利用分類計數(shù)原理,即可得出結(jié)論.

解答 解:數(shù)字4出現(xiàn)在第2位時,數(shù)字1,3,5中相鄰的數(shù)字出現(xiàn)在第3,4位或者4,5位,共有C32A22A22=12個,
數(shù)字2出現(xiàn)在第4位時,同理也有12個;
數(shù)字4出現(xiàn)在第3位時,數(shù)字1,3,5中相鄰的數(shù)字出現(xiàn)在第1,2位或第4,5位,共有C21C32A22A22=24個,
故滿足條件的不同五位數(shù)的個數(shù)是48.
故答案為:48.

點評 本題考查分類計數(shù)原理,考查排列、組合知識,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$則z=$\frac{y}{x-3}$的最小值等于( 。
A.-4B.-2C.-$\frac{1}{8}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在某產(chǎn)品尺寸的頻率分布直方圖中,與其中一組[a,b)對應(yīng)的小長方形高是h.若該組的頻率為m,則|a-b|=$\frac{m}{h}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)命題p:A={x|(4x-3)2≤1};命題q:B={x|a≤x≤a+1},若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=f'(1)x2+x+1,則$\int_0^1{f(x)}dx$=( 。
A.$-\frac{7}{6}$B.$\frac{7}{6}$C.$\frac{5}{6}$D.$-\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知對任意實數(shù)x.都有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(-x)>0,則x<0時有( 。
A.f′(x)>0,g′(-x)>0B.f′(x)>0,g′(-x)<0C.f′(x)<0,g′(-x)>0D.f′(x)<0,g′(-x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$\overrightarrow{a}$=(λ+1,0,2λ),$\overrightarrow$=(6,2μ-1,2),且$\overrightarrow{a}$∥$\overrightarrow$,則λμ=$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與y軸的正半軸相交于點$M({0,\sqrt{3}})$,且橢圓的離心率為$\frac{1}{2}$.若曲線E上相異兩點A、B滿足直線MA,MB的斜率之積為$\frac{1}{4}$.
(1)求曲線E的方程;
(2)證明:直線AB恒過定點,并求定點的坐標(biāo);
(3)求△ABM的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)證明:BD1⊥平面A1C1D;
(Ⅱ)求多面體BDC1A1D1的體積.

查看答案和解析>>

同步練習(xí)冊答案