復(fù)數(shù)z=a+bi(a,b∈R)在復(fù)平面內(nèi)對應(yīng)的點為Z(a,b),若|z|=1,則點Z的軌跡是( 。
分析:根據(jù)復(fù)數(shù)的模長是1,和所給的復(fù)數(shù)的代數(shù)形式,寫出復(fù)數(shù)的模長計算公式,得到關(guān)于復(fù)數(shù)的對應(yīng)的點的坐標(biāo)的關(guān)系式,看出表示的是一個圓.
解答:解:∵復(fù)數(shù)z=a+bi(a,b∈R)在復(fù)平面內(nèi)對應(yīng)的點為Z(a,b),
|z|=1,
∴a2+b2=1,
∴點的軌跡是在以原點為圓心,1為半徑的圓上,
故選C.
點評:本題考查復(fù)數(shù)的模長公式,考查復(fù)數(shù)的代數(shù)表示及其幾何意義,考查原點方程求法,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、已知復(fù)數(shù)z=a+bi(a,b∈R),z1=1+i,z2=3-i,且z=z1•z2,則點P(a,b)在( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7、下列四個結(jié)論中正確的個數(shù)為( 。
①命題“若x2<1,則-1<x<1”的逆否命題是“若x>1或x<-1,則x2>1”
②已知p:?x∈R,sinx≤1,q:若a<b,則am2<bm2,則p∧q為真命題
③命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”
④復(fù)數(shù)z=a+bi(a,b∈R)表示純虛數(shù)的充要條件是a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)是純虛數(shù)”的(  )條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=a+bi(a,b∈R),若
z
1+i
=2-i
成立,則點P(a,b)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊答案