【題目】函數(shù)y=loga(x+3)-1(a>0,a≠1)的圖象恒過定點A.

(1) 求點A的坐標;

(2) 若點A在直線mx+ny+1=0上,其中m,n都是正數(shù),求的最小值.

【答案】(1)定點A的坐標是(-2,-1);(2)8.

【解析】試題分析:(1)根據(jù)對數(shù)函數(shù)的性質(zhì)可求出A的坐標,

(2)將出A的坐標代入直線方程可得m、n的關(guān)系,再利用1的代換結(jié)合均值不等式求解即可.

試題解析:

(1) 僅當(dāng)x=-2,函數(shù)y=loga(x+3)-1(a>0,a1)的函數(shù)值與a無關(guān),且此時y=-1,

定點A的坐標是(-2,-1).

(2) 將點A(-2,-1)的坐標代入mx+ny+1=0,

(-2)·m+(-1)·n+1=0,2m+n=1,

m,n>0, (2m+n)=4+4+2=8.

等號當(dāng)且僅當(dāng),m=,n=時成立.

故當(dāng)m=,n=取最小值為8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆江蘇如東高級中學(xué)等四校高三12月聯(lián)考】已知數(shù)列滿足,且對任意,都有

(1)求,;

(2)設(shè)).

求數(shù)列的通項公式;

設(shè)數(shù)列的前項和,是否存在正整數(shù),,且,使得,成等比數(shù)列?若存在,求出,的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù),滿足,實數(shù)滿足,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如下表所示:

積極參加班級工作

不積極參加班級工作

合計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計

24

26

50

(1)如果隨機調(diào)查這個班的一名學(xué)生,那么抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?

(2)若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項活動,問兩名學(xué)生中有1名男生的概率是多少?

(3)學(xué)生的學(xué)習(xí)積極性與對待班極工作的態(tài)度是否有關(guān)系?請說明理由.

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),當(dāng)x,y∈R時,恒有f(x+y)=f(x)+f(y).當(dāng)x>0時,f(x)>0.

(1)求證:f(x)是奇函數(shù);

(2)若f(1)=,試求f(x)在區(qū)間[-2,6]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進行消毒,已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,yt的函數(shù)關(guān)系式為 (a為常數(shù)),如圖所示.根據(jù)圖中提供的信息,回答下列問題:

(1)從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數(shù)關(guān)系式為_________;

(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進教室,那么從藥物釋放開始,至少需要經(jīng)過_________小時后,學(xué)生才能回到教室.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量

(1)將利潤表示為月產(chǎn)量的函數(shù)

(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大家知道, 莫言是中國首位獲得諾貝爾獎的文學(xué)家, 國人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取名同學(xué)調(diào)查對莫言作品的了解程度, 結(jié)果如下:

閱讀過莫言的作品數(shù)(

男生

女生

(1)試估計該校學(xué)生閱讀莫言作品超過篇的概率;

(2)對莫言作品閱讀超過篇的則稱為對莫言作品非常了解 否則為 一般了解 .根據(jù)題意完成下表, 并判斷能否在犯錯誤的概率不超過的前提下, 認為對莫言作品非常了解與性別有關(guān)?

非常了解

一般了解

合計

男生

女生

合計

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),已知曲線在點處的切線與直線垂直.

(1)求的值;

(2)若函數(shù),且在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案