2.已知向量$\overrightarrow{a}$=(4,-6),$\overrightarrow$=(9,m),且$\overrightarrow{a}$⊥$\overrightarrow$,則m的值為( 。
A.-$\frac{54}{4}$B.-6C.6D.$\frac{54}{4}$

分析 利用向量垂直的性質(zhì)直接求解.

解答 解:∵向量$\overrightarrow{a}$=(4,-6),$\overrightarrow$=(9,m),且$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}•\overrightarrow$=4×9+(-6)×m=0,
解得m=6.
故選:C.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意向量垂直的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將函數(shù)y=cos2x的圖象向左平移$\frac{π}{4}$個單位長度,再向下平移1個單位長度,所得的圖象的對稱軸是( 。
A.x=kπ+$\frac{π}{2}$,k∈ZB.x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈ZC.x=2kπ+π,k∈ZD.x=kπ+$\frac{π}{4}$,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知sin α=$\frac{12}{13}$,sin(α-β)=-$\frac{3}{5}$,α,β均為銳角,則sinβ等于( 。
A.$\frac{33}{65}$B.1C.$\frac{63}{65}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知隨機變量ξ服從正態(tài)分布N(μ,16),且P(ξ<-2)+P(ξ≤6)=1,則μ=( 。
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知sin$\frac{C}{2}=\frac{\sqrt{10}}{4}$,若△ABC的面積為$\frac{3\sqrt{15}}{4}$,且$si{n}^{2}A+si{n}^{2}B=\frac{13}{16}si{n}^{2}C$,則c的值為( 。
A.2$\sqrt{2}$B.3C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=1og2(x2-4x+6)-2,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,m),且($\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow$,則實數(shù)m的值為( 。
A.1B.-1C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.銳角△ABC中,角A,B,C的對邊分別是a,b,c,若tanC=2,則$\frac{sinA}{sinB}$的取值范圍是( 。
A.($\frac{{\sqrt{2}}}{2},\sqrt{2}$)B.($\frac{{\sqrt{3}}}{3},\sqrt{3}$)C.(0,$\sqrt{5}$)D.($\frac{1}{2},2$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.給出下列說法:
①圓的漸開線的參數(shù)方程不能轉(zhuǎn)化為普通方程;
②圓的漸開線也可以轉(zhuǎn)化為普通方程,但是轉(zhuǎn)化后的普通方程比較麻煩,且不容易看出坐標之間的關(guān)系,所以常使用參數(shù)方程研究圓的漸開線問題;
③在求圓的擺線和漸開線方程時,如果建立的坐標系原點和坐標軸選取不同,可能會得到不同的參數(shù)方程;
④圓的漸開線和x軸一定有交點而且是唯一的交點.
其中正確的說法有( 。
A.①③B.②④C.②③D.①③④

查看答案和解析>>

同步練習(xí)冊答案