如圖所示,正方形
和矩形
所在平面相互垂直,
是
的中點(diǎn).
(I)求證:
;
(Ⅱ)若直線
與平面
成45
o角,求異面直線
與
所成角的余弦值.
(I)證明:在矩形
中,
∵ 平面
平面
,且平面
平面
∴
∴
--------------6分
(Ⅱ)由(I)知:
∴
是直線
與平面
所成的角,即
-----------8分
設(shè)
取
,連接
∵
是
的中點(diǎn) ∴
∴
是異面直線
與
所成角或其補(bǔ)角--------10分
連接
交
于點(diǎn)
∵
,
的中點(diǎn)
∴
∴
∴ 異面直線
與
所成角的余弦值為
.-------12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
側(cè)面都是直角三角形的正三棱錐,底面邊長為a,則此棱錐的全面積是
A
B
C
D 都不對
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖4,四棱錐P-ABCD的底面ABCD是正方形,PD垂直于底面ABCD,已知四棱錐的正視圖,如圖5所示,
(Ⅰ)若M是PC的中點(diǎn),證明:DM⊥平面PBC;
(Ⅱ)求棱錐A-BDM的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)如圖,幾何體中,
平面
,
,
于點(diǎn)
,
于點(diǎn)
.
①若
,求直線
與平面
所成角的大;
②求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,在棱長為2的正方體
的中點(diǎn),P為BB
1的中點(diǎn).
(I)求證
;
(II)求異面直線
所成角的大;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱錐
中,
底面
,點(diǎn)
,
分別在棱
上,且
(Ⅰ)求證:
平面
;
(Ⅱ)當(dāng)
為
的中點(diǎn)時(shí),求
與平面
所成的角的余弦值;
(Ⅲ)是否存在點(diǎn)
使得二面角
為直二面角?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐P-ABCD中,底面四邊形ABCD是正方形,側(cè)面PDC是邊長為a的正三角形,且平面PDC⊥平面ABCD,E為PC的中點(diǎn).(1)求異面直線PA與DE所成的角的余弦值.(2)求點(diǎn)D到平面PAB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)如圖,已知正三棱柱
的底面正三角形的邊長是2,D是
的中點(diǎn),直線
與側(cè)面
所成的角是
.
(Ⅰ)求二面角
的正切值;
(Ⅱ)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐P-ABCD中,AD∥BC,∠ADC=
,
PC⊥平面ABCD,點(diǎn)E為AB中點(diǎn)。AC⊥DE,
其中AD=1,PC=2,CD=
;
(1)求異面直線DE與PB所成角的余弦值;
(2)求直線PC與平面PDE所成角的余弦值。
查看答案和解析>>