A. | [1,8] | B. | [3,8] | C. | [1,3] | D. | [1,6] |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y-2≥0\\ 2x+y-4≤0\\ x-y+1≥0\end{array}\right.$,對(duì)應(yīng)的平面區(qū)域如圖:
∴x≥0,y≤2,∴z=3|x|+|y-2|=3x-y+2,
由z=3x-y+2得y=3x-z+2,
平移直線y=3x-z+2,由圖象可知當(dāng)直線y=3x-z+3經(jīng)過(guò)點(diǎn)A時(shí),直線y=3x-z+3的截距最大,此時(shí)z最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+2y-2=0}\end{array}\right.$,解得A(0,1),
此時(shí)zmin=3×0-1+2=1,
當(dāng)直線y=3x-z+2經(jīng)過(guò)點(diǎn)B(2,0)時(shí),直線y=3x-z+2的截距最小,此時(shí)z最大,
此時(shí)zmax=3×2-0+2=8,
故1≤z≤8,
故選:A.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決此類問(wèn)題的基本方法,利用z的幾何意義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -26 | B. | -27 | C. | -28 | D. | -29 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com