分析 (1)由命題p為真命題,則$d=\frac{{|{\sqrt{3}×0+1×(-1)-4m}|}}{{\sqrt{{{(\sqrt{3})}^2}+{1^2}}}}>1$,解得實(shí)數(shù)m的取值范圍;
(2)若“p∨q”為真,“p∧q”為假,則p,q一真一假,分類討論可得實(shí)數(shù)m的取值范圍.
解答 解:(1)由命題p為真命題,則$d=\frac{{|{\sqrt{3}×0+1×(-1)-4m}|}}{{\sqrt{{{(\sqrt{3})}^2}+{1^2}}}}>1$…(3分)
解得$m>\frac{1}{4}$或$m<-\frac{3}{4}$…(6分)
(2)若命題q為真命題,則$\left\{{\begin{array}{l}{2m>0}\\{1-m>0}\\{\;}\end{array}}\right.⇒0<m<1$…(8分)
∵“p∨q”為真,“p∧q”為假,
∴p,q一真一假…(9分)
若p真q假,則m≥1或$m<-\frac{3}{4}$…(11分);
若p假q真,則$0<m≤\frac{1}{4}$…(13分)
綜上:m的取值范圍為m≥1或$m<-\frac{3}{4}$,或$0<m≤\frac{1}{4}$…(14分)
點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,二次方程根與系數(shù)的關(guān)系,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com