已知函數(shù)f(x)=2mx2-2(4-m)x+1,g(x)=mx,若對于任一實數(shù)x,f(x)與g(x)至少有一個為正數(shù),則實數(shù)m的取值范圍是(  )
A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)
B
當m≤0時,顯然不成立,當m>0時,因f(0)=1>0,當-=≥0即0<m≤4時結(jié)論顯然成立;
當-=<0時只要Δ=4(4-m)2-8m=4(m-8)(m-2)<0,即4<m<8,則實數(shù)m的取值范圍是0<m<8,故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(1)設(shè),求的最大值與最小值;
(2)求的最大值與最小值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)集合
(1)若求函數(shù)的解析式;
(2)若,且設(shè)在區(qū)間上的最大值、最小值分別為,記,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)定義域為R的函數(shù)f(x)滿足:對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當x>0時,f(x)<0恒成立.
(1)判斷f(x)的奇偶性及單調(diào)性,并對f(x)的奇偶性結(jié)論給出證明;
(2)若函數(shù)f(x)在[-3,3]上總有f(x)≤6成立,試確定f(1)應滿足的條件;
(3)解x的不等式
1
n
f(x2)-f(x)>
1
n
f(ax)-f(a)
(n是一個給定的正整數(shù),a∈R).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點,焦點在軸上的橢圓的離心率為,橢圓上異于長軸頂點的任意點與左右兩焦點、構(gòu)成的三角形中面積的最大值為.
(1)求橢圓的標準方程;
(2)已知點,連接與橢圓的另一交點記為,若與橢圓相切時、不重合,連接與橢圓的另一交點記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).設(shè), (max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記的最小值為A,的最大值為B,則(    )
A.16
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若不等式(mx-1)[3m 2-( x + 1)m-1]≥0對任意恒成立,則實數(shù)x的值為    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于二次函數(shù)f(x)=ax2+bx+c,有下列命題:
①若f(p)=q,f(q)=p(p≠q),則f(p+q)=-(p+q);
②若f(p)=f(q)(p≠q),則f(p+q)=c;
③若f(p+q)=c(p≠q),則p+q=0或f(p)=f(q).
其中一定正確的命題是________(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

定義運算:,例如:,,則函數(shù)的最大值為____________.

查看答案和解析>>

同步練習冊答案