(2013•海淀區(qū)二模)已知函數(shù)f(x)=lnx,g(x)=-
x
a
(a>0)
(Ⅰ)當(dāng)a=1時,若曲線y=f(x)在點M(x0,f(x0))處的切線與曲線y=g(x)在點P (x0,g(x0))處的切線平行,求實數(shù)x0的值;
(Ⅱ)若?x∈(0,e],都有f(x)≥g(x) 
3
2
,求實數(shù)a的取值范圍.
分析:(I)把a=1導(dǎo)入解析式,并求出f′(x)和g′(x),根據(jù)切線平行對應(yīng)的斜率相等列出方程,求出x0的值;
(II)根據(jù)條件設(shè)F(x)=f(x)-g(x)-
3
2
,再把條件進(jìn)行轉(zhuǎn)化,求出對應(yīng)的解析式和導(dǎo)數(shù),求出臨界點,并根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系列出表格,再對a進(jìn)行分類討論,分別判斷出函數(shù)的單調(diào)性,再求出對應(yīng)的最小值,列出不等式求出a的范圍.
解答:解:(I)把a=1代入得,g(x)=-
1
x
,
f′(x)=
1
x
,g′(x)=
1
x2

∵f(x)在點M (x0,f(x0))處的切線與g(x)在點P (x0,g(x0))處的切線平行,
1
x0
=
1
x02
,解得x0=1,
所以x0=1,
(II)由題意設(shè)F(x)=f(x)-g(x)-
3
2
=lnx+
a
x
-
3
2

∵?x∈(0,e],都有f(x)≥g(x)+
3
2

∴只要F(x)在(0,e]上的最小值大于等于0即可,
F′(x)=
1
x
-
a
x2
=
x-a
x2
,由F′(x)=0得,x=a,
F(x)、F′(x)隨x的變化情況如下表:
x (0,a) a (a,+∞)
F′(x) - 0 +
F(x) 遞減 極大值 遞增
當(dāng)a≥e時,函數(shù)F′(x)在(0,e)上單調(diào)遞減,F(xiàn)(e)為最小值,
∴F(e)=1+
a
e
-
3
2
≥0
,得a≥
e
2
,∴a≥e
當(dāng)a<e時,函數(shù)F(x)在(0,a)上單調(diào)遞減,在(a,e)上單調(diào)遞增,
則F(a)為最小值,所以F(a)=lna+
a
a
-
3
2
≥0
,得a≥
e
,
e
≤a<e
                                      
綜上,a≥
e
點評:本題考查了導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,以及恒成立問題的轉(zhuǎn)化,分類討論思想,考查了分析問題和解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)二模)雙曲線C的左右焦點分別為F1,F(xiàn)2,且F2恰為拋物線y2=4x的焦點,設(shè)雙曲線C與該拋物線的一個交點為A,若△AF1F2是以AF1為底邊的等腰三角形,則雙曲線C的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)二模)已知函數(shù)f(x)=ex,A(a,0)為一定點,直線x=t(t≠0)分別與函數(shù)f(x)的圖象和x軸交于點M,N,記△AMN的面積為S(t).
(Ⅰ)當(dāng)a=0時,求函數(shù)S(t)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>2時,若?t0∈[0,2],使得S(t0)≥e,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)二模)已知橢圓M:
x2
a2
+
y2
b2
=1  (a>b>0)
的四個頂點恰好是一邊長為2,一內(nèi)角為60°的菱形的四個頂點.
(Ⅰ)求橢圓M的方程;
(Ⅱ)直線l與橢圓M交于A,B兩點,且線段AB的垂直平分線經(jīng)過點(0,  -
1
2
)
,求△AOB(O為原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)二模)集合A={x|(x-1)(x+2)≤0},B={x|x<0},則A∪B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)二模)設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變該行(或該列)中所有數(shù)的符號,稱為一次“操作”.
(Ⅰ) 數(shù)表A如表1所示,若經(jīng)過兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實數(shù),請寫出每次“操作”后所得的數(shù)表(寫出一種方法即可); 
1 2 3 -7
-2 1 0 1
表1
(Ⅱ) 數(shù)表A如表2所示,若必須經(jīng)過兩次“操作”,才可使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),求整數(shù)a的所有可能值;
a a2-1 -a -a2
2-a 1-a2 a-2 a2
表2
(Ⅲ)對由m×n個實數(shù)組成的m行n列的任意一個數(shù)表A,能否經(jīng)過有限次“操作”以后,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù)?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案