已知
a
,
b
是兩個(gè)相互垂直的單位向量,而|
c
|=13,
c
a
=3,
c
b
=4,則對(duì)于任意實(shí)數(shù)t1,t2,則|
c
-t1
a
-t2
b
|的最小值是( 。
分析:根據(jù)題意,
a
2=
b
2=1且
a
b
=0,將此代入|
c
-t1
a
-t2
b
|2的式子,并且結(jié)合|
c
|=13,
c
a
=3,
c
b
=4,化簡(jiǎn)整理可得|
c
-t1
a
-t2
b
|2=(t1-3)2+(t2-4)2+144,由此不難得到t1=3,t2=4時(shí),|
c
-t1
a
-t2
b
|的最小值.
解答:解:|
c
-t1
a
-t2
b
|2=
c
2+t12
a
2+t22
b
2-2t1
c
a
)-2t2
c
b
)+2t1t2
a
b

a
,
b
是相互垂直的單位向量,且|
c
|=13,
c
a
=3,
c
b
=4,
∴|
c
-t1
a
-t2
b
|2=169+t12+t22-6t1-8t2=(t1-3)2+(t2-4)2+144
由此可得,當(dāng)且僅當(dāng)t1=3,t2=4時(shí),|
c
-t1
a
-t2
b
|2的最小值為144.
∴|
c
-t1
a
-t2
b
|的最小值為
144
=12
故選:C
點(diǎn)評(píng):本題給出向量
a
、
b
、
c
的長(zhǎng)度和夾角的一些數(shù)據(jù),求
c
-t1
a
-t2
b
長(zhǎng)度的最小值,著重考查了平面向量的數(shù)量積及其運(yùn)算性質(zhì)和二次式的最值等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知∠A、∠B是△ABC的兩個(gè)內(nèi)角,向量
m
=(cos
A-B
2
)
i
+(
5
2
sin
A+B
2
)
j
,其中
i
, 
j
為相互垂直的單位向量.若|
m
|=
3
2
4
,證明:tanAtanB=
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
是兩個(gè)相互垂直的單位向量,|
c
|=13
,
c
a
=3,
c
b
=4
,則對(duì)于任意t1、t2∈R,當(dāng)|
c
-t1
a
-t2
b
|
取最小值時(shí),函數(shù)f(x)=t1sinx+t2cosx(0≤x≤
π
2
)
的值域是
[3,5]
[3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黃岡重點(diǎn)作業(yè)·高三數(shù)學(xué)(下) 題型:047

如圖,已知a、b是兩條相互垂直的異面直線(xiàn),其公垂線(xiàn)段AB的長(zhǎng)為定值m,定長(zhǎng)為n(n>m)的線(xiàn)段PQ的兩個(gè)端點(diǎn)分別在a、b上移動(dòng),M、N分別是AB、PQ的中點(diǎn).

(1)求證:AB⊥MN;

(2)求證:MN的長(zhǎng)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北省荊州中學(xué)2008高考復(fù)習(xí)立體幾何基礎(chǔ)題題庫(kù)一(有詳細(xì)答案)人教版 人教版 題型:047

如圖,已知a、b是兩條相互垂直的異面直線(xiàn),其公垂線(xiàn)段AB的長(zhǎng)為定值m,定長(zhǎng)為n(nm)的線(xiàn)段PQ的兩個(gè)端點(diǎn)分別在a、b上移動(dòng),M、N分別是AB、PQ的中點(diǎn).

(1)求證:ABMN;

(2)求證:MN的長(zhǎng)是定值

查看答案和解析>>

同步練習(xí)冊(cè)答案