根據(jù)指令,機(jī)器人在平面上能完成下列動(dòng)作:先從原點(diǎn)O沿正東偏北)方向行走一段時(shí)間后,再向正北方向行走一段時(shí)間,但何時(shí)改變方向不定。假定機(jī)器人行走速度為10米/分鐘,則機(jī)器人行走2分鐘時(shí)的可能落點(diǎn)區(qū)域的面積是          
 平方米
如圖,
設(shè)機(jī)器人行走2分鐘時(shí)的位置為P。設(shè)機(jī)器人改變方向的點(diǎn)為A,。則由已知條件有 ,以及
.所以有    即所求平面圖形為弓形,其面積為 平方米。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果橢圓的兩焦點(diǎn)為F1(-1,0)和F2(1,0),P是橢圓上的一點(diǎn),且|PF1|、|F1F2|、|PF2|成等差數(shù)列,那么橢圓的方程是(    )
A.="1"B.=1
C.="1"D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線與橢圓相交于A、B兩點(diǎn).。
(1)若橢圓的離心率為,焦距為2,求線段AB的長;
(2)若向量與向量互相垂直(其中O為坐標(biāo)原點(diǎn)),當(dāng)橢圓的離心率e=2時(shí),求橢圓的長軸的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


橢圓的離心率為點(diǎn)軸上,,且、三點(diǎn)確定的圓恰好與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過作一條與兩坐標(biāo)軸都不垂直的直線交橢圓于、兩點(diǎn),在軸上是否存在定點(diǎn),使得恰好為△的內(nèi)角平分線,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知A、B、C是橢圓E:=1(a>b>0)上的三點(diǎn),其中點(diǎn)  
A的坐標(biāo)為(2,0),BC過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
(1)求點(diǎn)C的坐標(biāo)及橢圓E的方程;
(2)若橢圓E上存在兩點(diǎn)P、Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓M(ab>0)的離心率為,長軸長為,設(shè)過右焦點(diǎn)F傾斜角為的直線交橢圓MA,B兩點(diǎn)。
(Ⅰ)求橢圓M的方程;
(Ⅱ)求證| AB | =;
(Ⅲ)設(shè)過右焦點(diǎn)F且與直線AB垂直的直線交橢圓MCD,求|AB| + |CD|的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一橢圓的兩焦點(diǎn)為F1(0,-1)、F2(0,1),直線y=4是該橢圓的一條準(zhǔn)線.
(1)求此橢圓方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右準(zhǔn)線軸相交于點(diǎn),過橢圓右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn)在右準(zhǔn)線上,且軸。
求證:直線經(jīng)過線段的中點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知方程=1是焦點(diǎn)在y軸上的橢圓,則m的取值范圍是(    )
A.m<2B.m<-1或1<m<2C.1<m<2D.m<-1或1<m<

查看答案和解析>>

同步練習(xí)冊(cè)答案