精英家教網(wǎng)如圖,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個焦點為F(1,0),且過點(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AF與BN交于點M.
(。┣笞C:點M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.
分析:(Ⅰ)由題設(shè)a=2,c=1,從而b2=a2-c2=3,即可得橢圓C前方程.
(Ⅱ)(i)由題意得F(1,0),N(4,0).設(shè)A(m,n),則B(m,-n)(n≠0),
m2
4
+
n2
3
=1.
由題意知AF與BN的方程分別為:n(x-1)-(m-1)y=0,n(x-4)-(m-4)y=0.由此入手能夠推出點M恒在橢圓G上.
(ⅱ)設(shè)AM的方程為x=ty+1,代入
x2
4
+
y2
3
=1得(3t2+4)y2+6ty-9=0.設(shè)A(x1,y1),M(x2,y2),利用根與系數(shù)的關(guān)系能夠求出△AMN面積的最大值.
解答:精英家教網(wǎng)解:
(Ⅰ)由題設(shè)a=2,c=1,從而b2=a2-c2=3,
所以橢圓C前方程為
x2
4
+
y2
3
=1

(Ⅱ)(i)由題意得F(1,0),N(4,0).
設(shè)A(m,n),則B(m,-n)(n≠0),
m2
4
+
n2
3
=1.①
AF與BN的方程分別為:n(x-1)-(m-1)y=0,
n(x-4)-(m-4)y=0.
設(shè)M(x0,y0),則有n(x0-1)-(m-1)y0=0,②
n(x0-4)+(m-4)y0=0,③
由②,③得精英家教網(wǎng)
x0=
5m-8
2m-5
,y0=
3n
2m-5

由于
x
2
0
4
+
y
2
0
3
=
(5m-8)2
4(2m-5)2
+
3n2
(2m-5)2

=
(5m-8)2
4(2m-5)2
+
3n2
(2m-5)2

=
(5m-8)2+12n2
4(2m-5)2

=
(5m-8)2+36-9m2
4(2m-5)2

=1
所以點M恒在橢圓G上.
(ⅱ)設(shè)AM的方程為x=ty+1,
代入
x2
4
+
y2
3
=1,得(3t2+4)y2+6ty-9=0.
設(shè)A(x1,y1),M(x2,y2),則有y1+y2 =-
6x
3x2+4
,y1y2=-
9
3t2+4

|y1-y2|  =
(y1+y2)2-4y1y2
=
4
3
3t2+3
3t2+4

令3t2+4=λ(λ≥4),則|y1-y2|=
4
3•
λ-1
λ
=4
-(
1
λ
)
2
+
1
λ
=4
3
-(
1
λ
-
1
2
3
+
1
4
,
∵λ≥4,0<
1
λ
1
4
,∴當(dāng)
1
λ
=
1
4
,即λ=4,t=0時,|y1-y2|有最大值3,此時AM過點F,△AMN的面積S△AMN=|FN||y1-y2|  =
3
2
|y1-y2|
有最大值
9
2
點評:本題主要考查直線與橢圓的位置關(guān)系、軌跡方程、不等式等基本知識,考查運算能力和綜合解題能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓C:
x2
a2
+
y2
2
=1
焦點在x軸上,左、右頂點分別為A1、A,上頂點為B,拋物線C1、C2分別以A、B為焦點,其頂點均為坐標(biāo)原點O.C1與C2相交于直線y=
2
x
上一點P.
(Ⅰ)求橢圓C及拋物線C1、C2的方程;
(Ⅱ)若動直線l與直線OP垂直,且與橢圓C交于不同兩點M、N,已知點Q(-
2
,0),求
QM
.
QN
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)二模)如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,A1、A2為橢圓C的左、右頂點.
(Ⅰ)設(shè)F1為橢圓C的左焦點,證明:當(dāng)且僅當(dāng)橢圓C上的點P在橢圓的左、右頂點時|PF1|取得最小值與最大值;
(Ⅱ)若橢圓C上的點到焦點距離的最大值為3,最小值為1.求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅲ)若直線l:y=kx+m與(Ⅱ)中所述橢圓C相交于A,B兩點(A,B不是左右頂點),且滿足AA2⊥BA2,求證:直線l過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
a2-1
=1
的左右頂點分別為A、B,左右焦點分別為F1、F2,P為以F1、F2為直徑的圓上異于F1、F2的動點,直線PF1、PF2分別交橢圓C于M、N和D、E.
(1)證明:
AP
BP
為定值K;
(2)當(dāng)K=-2時,問是否存在點P,使得四邊形DMEN的面積最小,若存在,求出最小值和P坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的頂點為A1、A2、B1、B2,焦點為F1
F2,|A1B1|=
7
,
S?A1B1A2B 2=2S?B1F1B2F 2
(1)求橢圓C的方程;
(2)設(shè)l是過原點的直線,直線n與l垂直相交于P點,且n與橢圓相交于A,B兩點,|OP|=1,求
AP
PB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶三模)光線被曲線反射,等效于被曲線在反射點處的切線反射.已知光線從橢圓的一個焦點出發(fā),被橢圓反射后要回到橢圓的另一個焦點;光線從雙曲線的一個焦點出發(fā)被雙曲線反射后的反射光線等效于從另一個焦點發(fā)出;如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
與雙曲線C′:
x2
m2
-
y2
n2
=1(m>0,n>0)
有公共焦點,現(xiàn)一光線從它們的左焦點出發(fā),在橢圓與雙曲線間連續(xù)反射,則光線經(jīng)過2k(k∈N*)次反射后回到左焦點所經(jīng)過的路徑長為( 。

查看答案和解析>>

同步練習(xí)冊答案