定義max{a,b}=
a(a≥b)
b(a<b)
設(shè)實(shí)數(shù)x、y滿足約束條件
|x|≤2
|y|≤2
且z=max{4x+y,3x-y},則z的取值范圍為( 。
A、[-6,0]
B、[-7,10]
C、[-6,8]
D、[-7,8]
分析:本題屬于線性規(guī)劃問(wèn)題,先找出可行域,即四邊形ABCD上及其內(nèi)部,(4x+y)與(3x-y)相等的分界線x+2y=0,令z1=4x+y,點(diǎn)(x,y)在四邊形ABCD上及其內(nèi)部,求得z1范圍;令z2=3x-y,點(diǎn)(x,y)在四邊形ABEF上及其內(nèi)部(除AB邊)求得z2范圍,
將這2個(gè)范圍取并集可得答案.
解答:精英家教網(wǎng)解:∵(4x+y)-(3x-y)=x+2y,
z=
4x+y(x+2y≥0)
3x-y(x+2y<0)
直線x+2y=0
將約束條件
|x|≤2
|y|≤2
所確定的平面區(qū)域分為兩部分.如圖,
令z1=4x+y,點(diǎn)(x,y)在四邊形ABCD上及其內(nèi)部,求得-7≤z1≤10;
令z2=3x-y,點(diǎn)(x,y)在四邊形ABEF上及其內(nèi)部(除AB邊),
求得-7≤z2≤8.綜上可知,z的取值范圍為[-7,10].
故選B.
點(diǎn)評(píng):表面上看約束條件和目標(biāo)函數(shù)都是靜態(tài)的,實(shí)際上二者都是動(dòng)態(tài)變化的,目標(biāo)函數(shù)是z=4x+y還是z=3x-y并沒(méi)有明確確定下來(lái),直線x+2y=0又將原可行域分為兩部分.本題看似風(fēng)平浪靜,實(shí)際暗藏玄機(jī),化動(dòng)為靜,在靜態(tài)狀態(tài)下,從容破解問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義max{a,b}=
a(a≥b)
b(a<b)
,已知實(shí)數(shù)x,y滿足|x|≤1,|y|≤1,設(shè)z=max{x+y,2x-y},則z的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是
②③⑤
②③⑤
.(只填正確說(shuō)法序號(hào))
①若集合A={y|y=x-1},B={y|y=x2-1},則A∩B={(0,-1),(1,0)};
②函數(shù)y=f(x)的圖象與x=a(a∈R)的交點(diǎn)個(gè)數(shù)只能為0或1;
f(x)=lg(x+
x2+1
)
是定義在R上的奇函數(shù);
④若函數(shù)f(x)在(-∞,0],(0,+∞)都是單調(diào)增函數(shù),則f(x)在(-∞,+∞)上也是增函數(shù);
⑤定義max(a,b)=
a,(a≥b)
b,(a<b)
,則f(x)=max(x+1,4-2x)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義max(a,b)=
aa≥b
ba<b
,已知x、y滿足條件
x+2≥0
y≥0
x+y≤2
,若z=max(3x-y,4x-2y),則z的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義max{a,b}=
a,a≥b
b,a<b
,設(shè)實(shí)數(shù)x,y滿足約束條件
|x|≤2
|y|≤2
,z=max{2x-y,3x+y}
,則z的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義max{a,b,c}為a、b、c中的最大者,令M=max{|1+a+2b|,|1+a-2b|,|2+b|},則對(duì)任意實(shí)數(shù)a,b,M的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案