12.在△ABC中,已知b=7,c=8,B=60°,則△ABC的面積為6$\sqrt{3}$或10$\sqrt{3}$.

分析 根據(jù)題意,利用余弦定理算出a的值,再由正弦定理的面積公式即可算出△ABC的面積.

解答 解:∵△ABC中,b=7,c=8,B=60°,
∴由余弦定理,得b2=a2+c2-2accosB,
即49=a2+64-2×a×8×cos60°,
整理得a2-8a+15=0,
解得a=3或a=5,
∴△ABC的面積為S=$\frac{1}{2}$acsinB=$\frac{1}{2}$×8×a×$\frac{\sqrt{3}}{2}$=6$\sqrt{3}$或10$\sqrt{3}$.
故答案為:6$\sqrt{3}$或10$\sqrt{3}$.

點評 本題主要考查了余弦定理,三角形面積公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)y=f(x)在區(qū)間上[0,1]的圖象是連續(xù)不斷的一條曲線,且恒有0≤f(x)≤1,可以用隨機模擬方法近似計算出曲線y=f(x)及直線x=0,x-1=0,y=0所圍成部分的面積S,先產(chǎn)生兩組(每組N個)區(qū)間[0,1]上的均勻隨機數(shù)X1,X2,X3,…XN和y1,y2,y3,…yN,由此得到N個點(xi,yi)(i=1,2,3…N,再數(shù)出其中滿足yi≤f(xi)(i=1,2,3,…N)的點數(shù)N1,那么由隨機方法可以得到S的近似值為$\frac{{N}_{1}}{N}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知復(fù)數(shù)z=$\frac{a+i}{2-i}$(其中i為虛數(shù)單位),若z為純虛數(shù),則實數(shù)a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知菱形 ABCD 中,對角線 AC 與 BD 相交于一點 O,∠A=60°,將△BDC 沿著 BD 折起得△BDC',連結(jié) AC'.
(Ⅰ)求證:平面 AOC'⊥平面 ABD;
(Ⅱ)若點 C'在平面 ABD 上的投影恰好是△ABD 的重心,求直線 CD 與底面 ADC'所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若α為第三象限的角,則$\frac{\sqrt{1+sin2α}}{sinα+cosα}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知關(guān)于x的不等式:|2x-m|≤1的整數(shù)解有且僅有一個值為2.
(1)求整數(shù)m的值;
(2)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值;
(3)函數(shù)f(x)=|2x-a|+a,若不等式f(x)≤6的解集為{x|-2≤x≤3},且存在實數(shù)n使f(n)≤m-f(-n)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線C:x2=2py(p>0)的焦點為F,A為C上異于原點的任意一點,點A到x軸的距離等于|AF|-1.
(1)求拋物線C的方程;
(2)直線AF與C交于另一點B,拋物線C分別在點A,B處的切線交于點P,D為y軸正半軸上一點,直線AD與C交于另一點E,且有|FA|=|FD|,N是線段AE的靠近點A的四等分點.
(i)證明點P在△NAB的外接圓上;
(ii)△NAB的外接圓周長是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示給的程序運行結(jié)果為S=41,那么判斷空白框中應(yīng)填入的關(guān)于k的條件是( 。
A.k≥4B.k≥5C.k>6D.k>5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)全集U=R,集合M={x||x-$\frac{1}{2}$|$≤\frac{5}{2}$},P={x|-1≤x≤4},則(∁UM)∩P等于( 。
A.{x|-4≤x≤-2}B.{x|-1≤x≤3}C.{x|3<x≤4}D.{x|3≤x≤4}

查看答案和解析>>

同步練習(xí)冊答案