已知A,B為橢圓>b>0)上兩點(diǎn),且OA⊥OB(O為原點(diǎn))

(1)求證:為定值

(2)求△AOB面積的最大值和最小值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、D分別為橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率e=
3
2
,F(xiàn)1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線(xiàn)段AD上的任一點(diǎn),且
PF1
PF2
的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)直線(xiàn)l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與橢圓E有且僅有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B是橢圓
x2
a2
+
25y2
9a2
=1
上的兩點(diǎn),F(xiàn)2是橢圓的右焦點(diǎn),如果|AF2|+|BF2|=
8
5
a
,AB的中點(diǎn)到橢圓左準(zhǔn)線(xiàn)距離為
3
2
,則橢圓的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題:
①已知A、B為兩個(gè)定點(diǎn),若|PA|+|PB|=k(k為常數(shù)),則動(dòng)點(diǎn)P的軌跡為橢圓.
②雙曲線(xiàn)
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點(diǎn).
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率.
④過(guò)定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
(
OA
+
OB
)
,則動(dòng)點(diǎn)P的軌跡為橢圓;
其中真命題的序號(hào)為
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A、B為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
和雙曲線(xiàn)
x2
a2
-
y2
b2
=1
的公共頂點(diǎn),P、Q分別為雙曲線(xiàn)和橢圓上不同于A、B的動(dòng)點(diǎn),且
OP
OQ
(λ∈R,λ>1)
.設(shè)AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4
(1)求證:k1k2=
b2
a2

(2)求k1+k2+k3+k4的值;
(3)設(shè)F1、F2分別為雙曲線(xiàn)和橢圓的右焦點(diǎn),若PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案