【題目】如圖,定義:以橢圓中心為圓心,長軸為直徑的圓叫做橢圓的“輔助圓”.過橢圓第四象限內(nèi)一點M作x軸的垂線交其“輔助圓”于點N,當(dāng)點N在點M的下方時,稱點N為點M的“下輔助點”.已知橢圓上的點的下輔助點為(1,﹣1).
(1)求橢圓E的方程;
(2)若△OMN的面積等于,求下輔助點N的坐標(biāo);
(3)已知直線l:x﹣my﹣t=0與橢圓E交于不同的A,B兩點,若橢圓E上存在點P,使得四邊形OAPB是對邊平行且相等的四邊形.求直線l與坐標(biāo)軸圍成的三角形面積最小時的m2+t2的值.
【答案】(1)y2=1;(2)(,) 或(,);(3)3.
【解析】
(1)由橢圓過的點的坐標(biāo)和輔助圓x2+y2=a2過的坐標(biāo),代入可得a,b的值,進而求出橢圓的方程;
(2)設(shè)N的坐標(biāo)和M的坐標(biāo),代入橢圓和輔助圓求出N,M的坐標(biāo)的關(guān)系,進而求出△OMN的面積S△OMNx0(y1﹣y0),則x0y1和,y12=1,聯(lián)立求出下輔助點N的坐標(biāo);
(3)設(shè)A,B的坐標(biāo)將直線AB的方程與橢圓聯(lián)立求出兩根之和及兩根之積,求出AB的中點坐標(biāo),因為四邊形OAPB是對邊平行且相等,即四邊形OAPB恰好為平行四邊形,所以.所以三角形OAB面積為,當(dāng)且僅當(dāng)m2=2,t2=1時取等號,進而可得m2+t2的值為3.
(1)因為橢圓E:1,過點(1,),輔助圓x2+y2=a2過(1,1),所以可得a2=12+(﹣1)2=2,
所以橢圓的實半軸長的平方a2=2,
所以1,解得:b2=1,
∴橢圓E的方程為:y2=1;
(2)設(shè)點N(x0,y0),(y0<0),則由題意可得點M(x0,y1),(y1<0),將兩點坐標(biāo)分別代入輔助圓方程和橢圓方程可得,x02+y02=2,y12=1,
故y02=2y12,即y0,
又S△OMNx0(y1﹣y0),則x0y1
聯(lián)立,可解得或,∴下輔助點N 的坐標(biāo)為(,) 或(,);
(3)由題意可設(shè)A(x1,y1),B(x2,y2).
聯(lián)立整理得(m2+2)y2+2mty+t2﹣2=0,
則△=8(m2+2﹣t2)>0.
根據(jù)韋達定理得,
因為四邊形OAPB是對邊平行且相等,即四邊形OAPB恰好為平行四邊形,
所以.所以,
因為點P在橢圓E 上,所以,
整理得,即4t2=m2+2,
在直線l:x﹣my﹣t=0中,由于直線l與坐標(biāo)軸圍成三角形,則t≠0,m≠0.
令x=0,得,令y=0,得x=t.
所以三角形OAB面積為,
當(dāng)且僅當(dāng)m2=2,t2=1時,取等號,此時△=24>0.且有m2+t2=3,
故所求m2+t2 的值為3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中滿足被3除余2且被5除余3的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列的項數(shù)是( )
A.135B.134C.59D.58
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,三內(nèi)角A,B,C滿足.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)若點D在線段AC上,且CD=2DA,,求tanA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國經(jīng)濟取得了長足的進步,同時性別比例問題日益突出.根據(jù)國家統(tǒng)計局發(fā)布的2019年統(tǒng)計年鑒,將國家31個省級行政區(qū)(特別行政區(qū)未記人)的人均國內(nèi)生產(chǎn)總值與人口性別比例(每100位女性所對應(yīng)的男性數(shù)目)做出了如下柱狀圖.從人口統(tǒng)計學(xué)角度來說,性別比例正常范圍在102至107之間.人均國內(nèi)生產(chǎn)總值小于6.5萬元人民幣(約1萬美元)稱為欠發(fā)達地區(qū),大于或等于6.5萬元的地區(qū)稱為發(fā)達地區(qū).
(1)已知性別比例正常的省級行政區(qū)中欠發(fā)達的行政區(qū)的個數(shù)是發(fā)達行政區(qū)的兩倍,完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為各省級行政區(qū)的性別比例與經(jīng)濟發(fā)展程度有關(guān);
(2)在人均國內(nèi)生產(chǎn)總值介于6.5萬與10萬之間的7省級行政區(qū)中,有3個人口性別比例正常,從中任取兩個,求抽到兩個省級行政區(qū)的人口性別比例都正常的概率.
附:參考公式及臨界值表
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱柱ABC﹣A1B1C1的底面邊長為,且該三棱柱外接球的表面積為14π,若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C:(a>b>0)的右焦點為F,橢圓C上的兩點A,B關(guān)于原點對稱,且滿足,|FB|≤|FA|≤2|FB|,則橢圓C的離心率的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】F是拋物線的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過三點的圓的圓心為Q,點Q到拋物線C的準(zhǔn)線的距離為.
(1)求拋物線C的方程;
(2)若點M的橫坐標(biāo)為,直線與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當(dāng)時,的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù),且,在以為極點、軸的非負半軸為極軸的極坐標(biāo)系(兩種坐標(biāo)系取相同的單位長度)中,曲線的極坐標(biāo)方程為,設(shè)直線經(jīng)過定點,且與曲線交于、兩點.
(Ⅰ)求點的直角坐標(biāo)及曲線的直角坐標(biāo)方程;
(Ⅱ)求證:不論為何值時,為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com