分析 由已知條件推導(dǎo)出Sn=$\frac{9}{2}×{3}^{n}$-$\frac{9}{2}$,再由an=Sn-Sn-1,能求出數(shù)列{an}的通項(xiàng)公式.
解答 解:∵數(shù)列{an}的首項(xiàng)a1=9,其前n項(xiàng)和為Sn,且數(shù)列{Sn+$\frac{9}{2}$}是公比為3的等比數(shù)列,
∴${S}_{1}+\frac{9}{2}$=9+$\frac{9}{2}$=$\frac{27}{2}$,
∴Sn+$\frac{9}{2}$=$\frac{27}{2}$×3n-1,
∴Sn=$\frac{9}{2}×{3}^{n}$-$\frac{9}{2}$,
∴${a}_{1}={S}_{1}=\frac{9}{2}×3-\frac{9}{2}$=9,
當(dāng)n≥2時(shí),an=Sn-Sn-1=($\frac{9}{2}×{3}^{n}$-$\frac{9}{2}$)-($\frac{9}{2}×{3}^{n-1}$-$\frac{9}{2}$)=3n+1,
當(dāng)n=1時(shí),上式成立,
∴數(shù)列{an}的通項(xiàng)公式${a}_{n}={3}^{n+1}$.
點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
連鎖店 | A店 | B店 | C店 | |||
售價(jià)x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
銷售量y(件) | 88 | 78 | 85 | 75 | 82 | 66 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com