已知a>0,n為正整數(shù),
(Ⅰ)設(shè)y=(x-a)n,證明y′=n(x-a)n-1;
(Ⅱ)設(shè)fn(x)=xn-(x-a)n,對任意n≥a,證明fn+1′(n+1)>(n+1)fn′(n)。
證明:(Ⅰ)因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.1010pic.com/pic1/upload/papers/g02/20111205/201112051539166871224.gif">,
所以;
(Ⅱ)對函數(shù),求導(dǎo)數(shù):
所以,
當(dāng)x≥a>0時(shí),,
∴當(dāng)x≥a時(shí),是關(guān)于x的增函數(shù),
因此,當(dāng)n≥a時(shí),,

,
即對任意。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)一種儀器,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)以往的經(jīng)驗(yàn)知道,其次品率P與日產(chǎn)量x(件)之間近似滿足關(guān)系:P=
1
96-x
,1≤x≤c,x∈N+
2
3
,x>c,x∈N+
(其中c為小于96的正整常數(shù))
(注:次品率P=
次品數(shù)
總生產(chǎn)量
,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品.)已知每生產(chǎn)一件合格的儀器可以盈利A元,但每生產(chǎn)一件次品將虧損A/2元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器每天的贏利T(元)表示為日產(chǎn)量x(件的函數(shù));
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?

查看答案和解析>>

同步練習(xí)冊答案