求函數(shù)y=|x+3|+|x-5|的值域.
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用絕對值不等式的性質(zhì)可得:y=|x+3|+|x-5|≥|x+3-(x-5)|.即可得出函數(shù)的值域.
解答: 解:∵函數(shù)y=|x+3|+|x-5|≥|x+3-(x-5)|=8.
∴函數(shù)y=|x+3|+|x-5|的值域為:[8,+∞).
點評:本題考查了絕對值不等式的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,設(shè)f(x)=
ax
ax+
a
,求f(
1
10
)+f(
2
10
)+…+f(
9
10
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x≥1,則函數(shù)f(x)=2log3(x+
3
x
-
3
)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“a>0”是“a2+a≥0”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
b
是非零向量,且(
a
+
b
)⊥(
a
-
b
),(
a
+2
b
)⊥(2
a
-
b
),則3
a
+4
b
與2
a
+
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=asinx+bcosx(a、b為常數(shù)).
(1)若f(
π
4
)=0,f(π)=
2
,求f(x)的解析式,并化為f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的形式;
(2)若a=2,b=0,g(x)=f(x+
π
6
),寫出g(x)的解析式;當x∈[-
π
6
11π
6
]時,按照“五點法”作圖步驟,畫出函數(shù)g(x)的圖象,寫出一個區(qū)間D,D⊆[-
π
6
,
11π
6
],使得在區(qū)間D上,g(x)≥0且g(x)單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
ax+1
x+2a
在區(qū)間(-2,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=4,an+1-an=3,試寫出這個數(shù)列的前6項并猜想該數(shù)列的一個通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市某社區(qū)擬選拔一批綜合素質(zhì)較強的群眾,參加社區(qū)的義務(wù)服務(wù)工作.假定符合參加選拔條件的每個選手還需要進行四輪考核,每輪設(shè)有一個問題,能正確回答問題者進入下一輪考核,否則即被淘汰.已知某選手能正確回答第一、二、三、四輪問題的概率分別為
4
5
,
3
4
,
1
2
,
1
3
且各輪問題能否正確回答互不影響.
(1)求該選手進入第四輪才被淘率的概率;
(2)該選手在選拔過程中回答過的問題的總個數(shù)記為X,求隨機變量X的分布列與數(shù)學期望.(注:本小題結(jié)果可用分數(shù)表示)

查看答案和解析>>

同步練習冊答案