設(shè)函數(shù)f(x)=
ax+1
x+2a
在區(qū)間(-2,+∞)上是增函數(shù),求a的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分離常數(shù)法,可將函數(shù)化為f(x)=a+
1-2a2
x+2a
,結(jié)合反比例型函數(shù)的圖象和性質(zhì),可得-2a≤-2,且1-2a2<0,解得a的取值范圍.
解答: 解:∵函數(shù)f(x)=
ax+1
x+2a
=
a(x+2a)+1-2a2
x+2a
=a+
1-2a2
x+2a
,
若函數(shù)f(x)=
ax+1
x+2a
在區(qū)間(-2,+∞)上是增函數(shù),
則-2a≤-2,且1-2a2<0,
解得:a≥1,
故a的取值范圍為[1,+∞)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的性質(zhì),解答時(shí)要注意函數(shù)定義域?qū)取值范圍的影響,本題易錯(cuò)解為(
2
2
,+∞)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c與直線y=mx+n相交于兩點(diǎn),這兩點(diǎn)的坐標(biāo)分別是(0,-
1
2
)和(m-b,m2-mb+n),其中a,b,c,m,n為實(shí)數(shù),且a,m不為0.
(1)求c的值;
(2)設(shè)拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)是(x1,0)和(x2,0),求x1x2的值;
(3)當(dāng)-1≤x≤1時(shí),設(shè)拋物線y=ax2+bx+c上與x軸距離最大的點(diǎn)為P(xo,yo ),
求這時(shí)|yo|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x+
1
x
)=x2+
1
x2
,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=|x+3|+|x-5|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時(shí),f(x)=x,則關(guān)于x的方程f(x)=(
1
10
x在x∈[0,4]上解的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)是定義在(1,4)上單調(diào)遞減函數(shù),且f(t2)-f(t)<0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

50件產(chǎn)品中有46件合格品和4件廢品,從中隨機(jī)取出2件,求其中有廢品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x+1,則y=f(x)的圖象與圓x2+y2-2x-2y=0的公共點(diǎn)的個(gè)數(shù)是(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={y|y=x2+2x+1},N={y|y=x2-2x},則集合M與N的關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案