若直線l1:2x-5y+20=0和直線l2:mx-2y-10=0與坐標(biāo)軸圍成的四邊形有一個外接圓,則實數(shù)m的值等于
 
分析:因為兩直線與兩坐標(biāo)軸圍成的四邊形有外接圓,由兩坐標(biāo)軸垂直,即夾角為90°,根據(jù)圓的內(nèi)接四邊形對角互補(bǔ)得到兩直線的夾角為90°,即互相垂直,分別找出兩直線的斜率,根據(jù)兩直線垂直時斜率的乘積為-1列出關(guān)于m的方程,求出方程的解即可得到m的值.
解答:解:根據(jù)題意可知:兩直線l1和l2垂直,
∵兩直線l1:2x-5y+20=0和直線l2:mx-2y-10=0的斜率分別為
2
5
m
2
,
2
5
×
m
2
=-1,解得:m=-5.
故答案為:-5.
點評:此題考查了直線與圓的位置關(guān)系,以及兩直線垂直時斜率滿足的關(guān)系.由題意,根據(jù)圓內(nèi)接四邊形的對角互補(bǔ)得到兩直線垂直是本題的突破點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線l1:(m+3)x+4y+3m-5=0與l2:2x+(m+5)y-8=0平行,則m的值為( 。
A、-7
B、-1或-7
C、-6
D、-
13
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三條直線l1:2x-y+a=0(a>0),l2:-4x+2y+1=0和l3:x+y-1=0,且l1與l2的距離是
7
5
10
;
(1)求a的值;
(2)能否找到一點P同時滿足下列三個條件:
①P是第一象限的點;
②點P到l1的距離是點P到l2的距離的
1
2

③點P到l1的距離與點P到l3的距離之比是
2
5
?若能,求點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:2x+y-5=0,l2:x-2y=0
(1)求直線l1和直線l2交點P的坐標(biāo);
(2)若直線l經(jīng)過點P且在兩坐標(biāo)軸上的截距相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列4個命題:

①“0<x<5”是“不等式|x-2|<3”成立的充分不必要條件;

②直線l1:y=2x-5到直線l2:y=-x+5的角是;

③在曲線y=4x-x2上取兩點A(4,0)、B(2,4),若曲線上一點P處的切線恰好平行于弦AB,則點P的坐標(biāo)為(3,3);

④把4本不同的書分成三堆,共有6種不同分法.

其中錯誤的命題有_______________.(把你認(rèn)為錯誤命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列4個命題:

①“0<x<5”是“不等式|x-2|<3”成立的充分不必要條件;

②直線l1:y=2x-5到直線l2:y=x+5的角是;

③在曲線y=4x-x2上取兩點A(4,0)、B(2,4),若曲線上一點P處的切線恰好平行于弦AB,則點P的坐標(biāo)為(3,3);

④把4本不同的書分成三堆,共有6種不同分法.

其中錯誤的命題有_____________.(把你認(rèn)為錯誤命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案