(本小題滿分12分)已知數(shù)列
,
定義其倒均數(shù)是
。
(1)求數(shù)列{
}的倒均數(shù)是
,求數(shù)列{
}的通項公式
;
(2)設(shè)等比數(shù)列
的首項為-1,公比為
,其倒數(shù)均為
,若存在正整數(shù)k,使得當(dāng)
恒成立,試找出一個這樣的k值(只需找出一個即可,不必證明)
(1)
(2)見解析
(1)依題意,
即
當(dāng)
兩式相減得,得
∴
……………………4分
當(dāng)n=1時,
∴
=1適合上式……………………5分
故
…………………………6分
(2)由題意,
∴
………………10分
不等式
恒成立,即
恒成立!11分
經(jīng)檢驗:
時均適合題意(寫出一個即可)。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)
已知數(shù)列
的前
項和為
,且
(
N
*),其中
.
(Ⅰ)求
的通項公式;
(Ⅱ) 設(shè)
(
N
*).
①證明:
;
② 求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
各項均為正數(shù)的數(shù)列
,
,且對滿足
的正整數(shù)
都有
。
(1)當(dāng)
時,求通項
;
(2)證明:對任意
,存在與
有關(guān)的常數(shù)
,使得對于每個正整數(shù)
,都有
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在等差數(shù)列
中,有
,則此數(shù)列的前13項之和為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列{
an}是公差不為零的等差數(shù)列,
Sn是數(shù)列{
an}的前
n項和,且
=9
S2,
S4=4
S2,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是等差數(shù)列,
,
,則該數(shù)列前10項和
等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
數(shù)列
是公差不為0的等差數(shù)列,且
為等比數(shù)列
的連續(xù)三項,則數(shù)列
的公比為
A. | B.4 | C.2 | D. |
查看答案和解析>>